342 research outputs found
Search for TeV Scale Physics in Heavy Flavour Decays
The subject of heavy flavour decays as probes for physics beyond the TeV
scale is covered from the experimental perspective. Emphasis is placed on the
more traditional Beyond the Standard Model topics that have potential for
impact in the short term, with the physics explained. We do unabashedly promote
our own phemonenology work.Comment: 10 pages, 9 figures (now fixed); Submitted for the SUSY07 proceeding
Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models
In the framework of general two-Higgs-doublet models, we calculate the
branching ratios of various inclusive charmless b decays by using the low
energy effective Hamiltonian including next-to-leading order QCD corrections,
and examine the current status and the new physics effects on the determination
of the charm multiplicity and semileptonic branching ratio .
Within the considered parameter space, the enhancement to the ratio due to the charged-Higgs penguins can be as large as a factor of 8 (3) in
the model III (II), while the ratio can be increased from
the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II).
Consequently, the value of and can be decreased simultaneously
in the model III. The central value of will be lowered slightly by
about 0.003, but the ratio can be reduced significantly from the
theoretical prediction of in the SM to , for GeV, respectively. We find that
the predicted and the measured now agree within roughly one
standard deviation after taking into account the effects of gluonic charged
Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be
published in Phys.Rev.
Charmless hadronic decays and new physics effects in the general two-Higgs doublet models
Based on the low-energy effective Hamiltonian with the generalized
factorization, we calculate the new physics contributions to the branching
ratios of the two-body charmless hadronic decays of and mesons
induced by the new gluonic and electroweak charged-Higgs penguin diagrams in
the general two-Higgs doublet models (models I, II and III). Within the
considered parameter space, we find that: (a) the new physics effects from new
gluonic penguin diagrams strongly dominate over those from the new -
and - penguin diagrams; (b) in models I and II, new physics contributions
to most studied B meson decay channels are rather small in size: from -15% to
20%; (c) in model III, however, the new physics enhancements to the
penguin-dominated decay modes can be significant, , and
therefore are measurable in forthcoming high precision B experiments; (d) the
new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in
model III, , and hence provide a simple and plausible new
physics interpretation for the observed unexpectedly large B \to K \etap
decay rates; (e) the theoretical predictions for and
in model III are still consistent with the data
within errors; (f) the significant new physics enhancements to the
branching ratios of and decays are helpful to improve the
agreement between the data and the theoretical predictions; (g) the theoretical
predictions of in the 2HDM's are generally
consistent with experimental measurements and upper limits ()Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections,
final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4
CP violation in in the model III 2HDM
We have calculated the Wilson coefficients (i=1,2) in the
renormalization scheme in the model III 2HDM. Using the obtained
Wilson coefficients, we have analyzed the CP violation in decays (q=d,s) in the model. The CP asymmetry, , depends on the
parameters of models and in can be as large as 40% and
35% for and respectively. It can reach 4% for decays.
Because in SM CP violation is smaller than or equal to O() which is
unobservably small, an observation of CP asymmetry in the decays would unambiguously signal the existence of new physics.Comment: revtex4, 16 pages, 7 figure
Delocalization and spin-wave dynamics in ferromagnetic chains with long-range correlated random exchange
We study the one-dimensional quantum Heisenberg ferromagnet with exchange
couplings exhibiting long-range correlated disorder with power spectrum
proportional to , where is the wave-vector of the modulations
on the random coupling landscape. By using renormalization group, integration
of the equations of motion and exact diagonalization, we compute the spin-wave
localization length and the mean-square displacement of the wave-packet. We
find that, associated with the emergence of extended spin-waves in the
low-energy region for , the wave-packet mean-square displacement
changes from a long-time super-diffusive behavior for to a
long-time ballistic behavior for . At the vicinity of ,
the mobility edge separating the extended and localized phases is shown to
scale with the degree of correlation as .Comment: PRB to appea
The lifetime of B_c-meson and some relevant problems
The lifetime of the B_c-meson is estimated with consistent considerations on
all of the heavy mesons () and the double
heavy meson B_c. In the estimate, the framework, where the non-spectator
effects for nonleptonic decays are taken into account properly, is adopted, and
the parameters needed to be fixed are treated carefully and determined by
fitting the available data. The bound-state effects in it are also considered.
We find that in decays of the meson B_c, the QCD correction terms of the
penguin diagrams and the main component terms c_1O_1, c_2O_2 of the effective
interaction Lagrangian have direct interference that causes an enhancement
about 3 ~ 4% in the total width of the B_c meson.Comment: 27 pages, 0 figur
Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states II: calculation of the glueball spectrum
In the preceding paper, a rigorous three-dimensional relativistic equation
for two-gluon bound states was derived from the QCD with massive gluons and
represented in the angular momentum representation. In order to apply this
equation to calculate the glueball spectrum, in this paper, the equation is
recast in an equivalent three-dimensional relativistic equation satisfied by
the two-gluon positive energy state amplitude. The interaction Hamiltonian in
the equation is exactly derived and expressed as a perturbative series. The
first term in the series describes the one-gluon exchange interaction which
includes fully the retardation effect in it. This term plus the linear
confining potential are chosen to be the interaction Hamiltonian and employed
in the practical calculation. With the integrals containing three and four
spherical Bessel functions in the QCD vertices being analytically calculated,
the interaction Hamiltonian is given an explicit expression in the angular
momentum representation. Numerically solving the relativistic equation with
taking the contributions arising from the retardation effect and the
longitudinal mode of gluon fields into account, a set of masses for the
and glueball states are
obtained and are in fairly good agreement with the predictions given by the
lattice simulatio
Muon anomalous magnetic moment in the standard model with two Higgs doublets
The muon anomalous magnetic moment is investigated in the standard model with
two Higgs doublets (S2HDM) motivated from spontaneous CP violation. Thus all
the effective Yukawa couplings become complex. As a consequence of the non-zero
phase in the couplings, the one loop contribution from the neutral scalar
bosons could be positive and negative relying on the CP phases. The
interference between one and two loop diagrams can be constructive in a large
parameter space of CP-phases. This will result in a significant contribution to
muon anomalous magnetic moment even in the flavor conserving process with a
heavy neutral scalar boson ( 200 GeV) once the effective muon Yukawa
coupling is large (). In general, the one loop contributions
from lepton flavor changing scalar interactions become more important. In
particular, when all contributions are positive in a reasonable parameter space
of CP phases, the recently reported 2.6 sigma experiment vs. theory deviation
can be easily explained even for a heavy scalar boson with a relative small
Yukawa coupling in the S2HDM.Comment: 8 pages, RevTex file, 5 figures, published version Phys. Rev. D 54
(2001) 11501
Charmless decays using flavor SU(3) symmetry
The decays of mesons to a pair of charmless pseudoscalar () mesons are
analyzed within a framework of flavor SU(3). Symmetry breaking is taken into
account in tree () amplitudes through ratios of decay constants; exact SU(3)
is assumed elsewhere. Acceptable fits to and
branching ratios and CP asymmetries are obtained with tree, color-suppressed
(), penguin (), and electroweak penguin () amplitudes. Crucial
additional terms for describing processes involving and include
a large flavor-singlet penguin amplitude () as proposed earlier and a
penguin amplitude associated with intermediate and quarks. For
the mode a term associated with intermediate
and quarks also may be needed. Values of the weak phase are
obtained consistent with an earlier analysis of decays, where
denotes a vector meson, and with other analyses of CKM parameters.Comment: 26 pages, 1 figure. To be submitted to Phys. Rev. D. Reference
update
Towards an international understanding of the power of celebrity persuasions: a review and a research agenda
Research into advertising using celebrity has been undertaken for nearly 40 years. It has
principally used surveys and experiments to explore how consumers respond to celebrity
advertisements. A recent meta-study of 32 papers has demonstrated that different
populations respond in different ways to celebrity endorsements. Specifically, both US
subjects and college students are more likely to respond in a significant way to the
presence of celebrity than subjects who are not from the US, or who are not studying at
college. Given that the nationality and student status of subjects matter, this article
explores the make up of the samples that have been used to examine celebrity advertising.
The article finds that these samples are not representative of US populations
(because so many are students), nor of populations outside the US (because so few
live beyond it). Furthermore, the history of dominance of US-based student samples, and
the citation practices which keep them circulating in academia, suggests that theories of
celebrity advertising have for a long time been excessively influenced by ideas tested on
this unrepresentative group. This fact will limit the applicability of research into celebrity
advertising to the wider world. I explore whether this matters, and how deficiencies
might be addressed in further research
- …