38 research outputs found

    Saturn Atmospheric Structure and Dynamics

    Full text link
    2 Saturn inhabits a dynamical regime of rapidly rotating, internally heated atmospheres similar to Jupiter. Zonal winds have remained fairly steady since the time of Voyager except in the equatorial zone and slightly stronger winds occur at deeper levels. Eddies supply energy to the jets at a rate somewhat less than on Jupiter and mix potential vorticity near westward jets. Convective clouds exist preferentially in cyclonic shear regions as on Jupiter but also near jets, including major outbreaks near 35°S associated with Saturn electrostatic discharges, and in sporadic giant equatorial storms perhaps generated from frequent events at depth. The implied meridional circulation at and below the visible cloud tops consists of upwelling (downwelling) at cyclonic (anti-cyclonic) shear latitudes. Thermal winds decay upward above the clouds, implying a reversal of the circulation there. Warm-core vortices with associated cyclonic circulations exist at both poles, including surrounding thick high clouds at the south pole. Disequilibrium gas concentrations in the tropical upper troposphere imply rising motion there. The radiative-convective boundary and tropopause occur at higher pressure in the southern (summer) hemisphere due to greater penetration of solar heating there. A temperature “knee ” of warm air below the tropopause, perhaps due to haze heating, is stronger in the summer hemisphere as well. Saturn’s south polar stratosphere is warmer than predicted by radiative models and enhanced in ethane, suggesting subsidence-driven adiabatic warming there. Recent modeling advances suggest that shallow weather laye

    Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra

    Full text link

    The Ultraviolet Spectrograph on NASA’s Juno Mission

    Get PDF
    The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS

    Remote sensing of the energy of auroral electrons in Saturn’s atmosphere: Hubble and Cassini spectral observations

    Full text link
    Saturn’s north ultraviolet aurora has been successfully observed twice between March and May 2011 with the STIS long-slit spectrograph on board the Hubble Space Telescope. Spatially resolved spectra at ∼12 Å spectral resolution have been collected at different local times from dawn to dusk to determine the amount of hydrocarbon absorption. For this purpose, the HST telescope slewed across the auroral oval from mid-latitudes up to beyond the limb while collecting spectral data in the timetag mode. Spectral images of the north ultraviolet aurora were obtained within minutes and hours with the UVIS spectrograph on board Cassini. Several daytime sectors and one nightside location were observed and showed signatures of weak absorption by methane present in (or above) the layer of the auroral emission. No absorption from other hydrocarbons (e.g. C2H2) has been detected. For the absorbed spectra, the overlying slant CH4 column varies from 3x1015 to 2x1016 cm-2, but no clear dependence on local time is identified. A Monte Carlo electron transport model is used to calculate the vertical distribution of the H2 emission and to relate the observed spectra to the energy of the primary auroral electrons. Assuming electron precipitation with a Maxwellian energy distribution into a standard model atmosphere, we find that the mean energy ranges from less than 3 to ∼10 keV. These results are compared with previous determinations of the energy of Saturn’s aurora based on ultraviolet spectra and limb images. We conclude that the energies derived from spectral methods indicate a wide range of electron energies while the nightside limb images suggest that the auroral precipitation is consistently soft. We emphasize the need for more realistic model atmospheres with temperature and hydrocarbon distributions appropriate to high-latitude conditions
    corecore