1,557 research outputs found
Fundamental representations and algebraic properties of biquaternions or complexified quaternions
The fundamental properties of biquaternions (complexified quaternions) are
presented including several different representations, some of them new, and
definitions of fundamental operations such as the scalar and vector parts,
conjugates, semi-norms, polar forms, and inner and outer products. The notation
is consistent throughout, even between representations, providing a clear
account of the many ways in which the component parts of a biquaternion may be
manipulated algebraically
Universal properties for linelike melting of the vortex lattice
Using numerical results obtained within two models describing vortex matter
(interacting elastic lines (Bose model) and uniformly frustrated XY-model) we
establish universal properties of the melting transition within the linelike
regime. These properties, which are captured correctly by both models, include
the scaling of the melting temperature with anisotropy and magnetic field, the
effective line tension of vortices in the liquid regime, the latent heat, the
entropy jump per entanglement length, and relative jump of Josephson energy at
the transition as compared to the latent heat. The universal properties can
serve as experimental fingerprints of the linelike regime of melting.
Comparison of the models allows us to establish boundaries of the linelike
regime in temperature and magnetic field.Comment: Revtex, 12 pages, 2 EPS figure
Comment on "Mean First Passage Time for Anomalous Diffusion"
We correct a previously erroneous calculation [Phys. Rev. E 62, 6065 (2000)]
of the mean first passage time of a subdiffusive process to reach either end of
a finite interval in one dimension. The mean first passage time is in fact
infinite.Comment: To appear in Phys. Rev.
Quaternion-Octonion SU(3) Flavor Symmetry
Starting with the quaternionic formulation of isospin SU(2) group, we have
derived the relations for different components of isospin with quark states.
Extending this formalism to the case of SU(3) group we have considered the
theory of octonion variables. Accordingly, the octonion splitting of SU(3)
group have been reconsidered and various commutation relations for SU(3) group
and its shift operators are also derived and verified for different iso-spin
multiplets i.e. I, U and V- spins.
Keywords: SU(3), Quaternions, Octonions and Gell Mann matrices
PACS NO: 11.30.Hv: Flavor symmetries; 12.10-Dm: Unified field theories and
models of strong and electroweak interaction
Quaternion Octonion Reformulation of Quantum Chromodynamics
We have made an attempt to develop the quaternionic formulation of Yang -
Mill's field equations and octonion reformulation of quantum chromo dynamics
(QCD). Starting with the Lagrangian density, we have discussed the field
equations of SU(2) and SU(3) gauge fields for both cases of global and local
gauge symmetries. It has been shown that the three quaternion units explain the
structure of Yang- Mill's field while the seven octonion units provide the
consistent structure of SU(3)_{C} gauge symmetry of quantum chromo dynamics
Gas turbine engine condition monitoring using Gaussian mixture and hidden Markov models
This paper investigates the problem of condition monitoring of complex dynamic systems, specifically the detection, localisation and quantification of transient faults. A data driven approach is developed for fault detection where the multidimensional data sequence is viewed as a stochastic process whose behaviour can be described by a hidden Markov model with two hidden states --- i.e. `healthy / nominal' and `unhealthy / faulty'. The fault detection is performed by first clustering in a multidimensional data space to define normal operating behaviour using a Gaussian-Uniform mixture model. The health status of the system at each data point is then determined by evaluating the posterior probabilities of the hidden states of a hidden Markov model. This allows the temporal relationship between sequential data points to be incorporated into the fault detection scheme. The proposed scheme is robust to noise and requires minimal tuning. A real-world case study is performed based on the detection of transient faults in the variable stator vane actuator of a gas turbine engine to demonstrate the successful application of the scheme. The results are used to demonstrate the generation of simple and easily interpretable analytics that can be used to monitor the evolution of the fault across time
On type-I migration near opacity transitions. A generalized Lindblad torque formula for planetary population synthesis
We give an expression for the Lindblad torque acting on a low-mass planet
embedded in a protoplanetary disk that is valid even at locations where the
surface density or temperature profile cannot be approximated by a power law,
such as an opacity transition. At such locations, the Lindblad torque is known
to suffer strong deviation from its standard value, with potentially important
implications for type I migration, but the full treatment of the tidal
interaction is cumbersome and not well suited to models of planetary population
synthesis. The expression that we propose retains the simplicity of the
standard Lindblad torque formula and gives results that accurately reproduce
those of numerical simulations, even at locations where the disk temperature
undergoes abrupt changes. Our study is conducted by means of customized
numerical simulations in the low-mass regime, in locally isothermal disks, and
compared to linear torque estimates obtained by summing fully analytic torque
estimates at each Lindblad resonance. The functional dependence of our modified
Lindblad torque expression is suggested by an estimate of the shift of the
Lindblad resonances that mostly contribute to the torque, in a disk with sharp
gradients of temperature or surface density, while the numerical coefficients
of the new terms are adjusted to seek agreement with numerics. As side results,
we find that the vortensity related corotation torque undergoes a boost at an
opacity transition that can counteract migration, and we find evidence from
numerical simulations that the linear corotation torque has a non-negligible
dependency upon the temperature gradient, in a locally isothermal disk.Comment: Appeared in special issue of "Celestial Mechanics and Dynamical
Astronomy" on Extrasolar Planetary System
Dilepton Spectra from Decays of Light Unflavored Mesons
The invariant mass spectrum of the and pairs
from decays of light unflavored mesons with masses below the -meson mass to final states containing along with a dilepton pair one
photon, one meson, and two mesons are calculated within the framework of the
effective meson theory. The results can be used for simulations of the dilepton
spectra in heavy-ion collisions and for experimental searches of dilepton meson
decays.Comment: 73 pages, 19 figures, 3 tables, REVTeX, new references adde
Octonion Quantum Chromodynamics
Starting with the usual definitions of octonions, an attempt has been made to
establish the relations between octonion basis elements and Gell-Mann \lambda
matrices of SU(3)symmetry on comparing the multiplication tables for Gell-Mann
\lambda matrices of SU(3)symmetry and octonion basis elements. Consequently,
the quantum chromo dynamics (QCD) has been reformulated and it is shown that
the theory of strong interactions could be explained better in terms of
non-associative octonion algebra. Further, the octonion automorphism group
SU(3) has been suitably handled with split basis of octonion algebra showing
that the SU(3)_{C}gauge theory of colored quarks carries two real gauge fields
which are responsible for the existence of two gauge potentials respectively
associated with electric charge and magnetic monopole and supports well the
idea that the colored quarks are dyons
- …