57 research outputs found

    Line-integral representations for the elastic displacements, stresses and interaction energy of arbitrary dislocation loops in transversely isotropic bimaterials

    Get PDF
    AbstractThe elastic displacements, stresses and interaction energy of arbitrarily shaped dislocation loops with general Burgers vectors in transversely isotropic bimaterials (i.e. joined half-spaces) are expressed in terms of simple line integrals for the first time. These expressions are very similar to their isotropic full-space counterparts in the literature and can be easily incorporated into three-dimensional (3D) dislocation dynamics (DD) simulations for hexagonal crystals with interfaces/surfaces. All possible degenerate cases, e.g. isotropic bimaterials and isotropic half-space, are considered in detail. The singularities intrinsic to the classical continuum theory of dislocations are removed by spreading the Burgers vector anisotropically around every point on the dislocation line according to three particular spreading functions. This non-singular treatment guarantees the equivalence among different versions of the energy formulae and their consistency with the stress formula presented in this paper. Several numerical examples are provided as verification of the derived dislocation solutions, which further show significant influence of material anisotropy and bimaterial interface on the elastic fields and interaction energy of dislocation loops

    Line-integral representations of the displacement and stress fields due to an arbitrary Volterra dislocation loop in a transversely isotropic elastic full space

    Get PDF
    AbstractTransversely isotropic materials or hexagonal crystals are commonly utilized in various engineering fields; however, dislocation solutions for such special materials have not been fully developed. In this paper, we present a comprehensive study on this important topic, where only Volterra dislocations of the translational type are considered. Based on the potential theory of linear elasticity, we extend the well-known Burgers displacement equation for an arbitrarily shaped dislocation loop in an isotropic elastic full space to the transversely isotropic case. Both the induced displacements and stresses are expressed uniformly in terms of simple and explicit line integrals along the dislocation loop. We introduce three quasi solid angles to describe the displacement discontinuities over the dislocation surface and extract a simple step function out of these angles to characterize the dependence of the displacements on the configuration of the dislocation surface. We also give a new explicit formula for calculating accurately and efficiently the traditional solid angle of an arbitrary polygonal dislocation loop. From the present line-integral representations, exact closed-form solutions in terms of elementary functions are further obtained in a unified way for the displacement and stress fields due to a straight dislocation segment of arbitrary orientation. The non-uniqueness of the elastic field solution due to an open dislocation segment is rigorously discussed and demonstrated. For a circular dislocation loop parallel to the plane of isotropy, a new explicit expression of the induced elastic field is presented in terms of complete elliptic integrals. Several numerical examples are also provided as illustration and verification of the derived dislocation solutions, which further show the importance of material anisotropy on the dislocation-induced elastic field, and reveal the non-uniqueness feature of the elastic field due to a straight dislocation segment

    Synthetic Aβ peptides acquire prion-like properties in the brain

    Get PDF
    In transmission studies with Alzheimer's disease (AD) animal models, the formation of Aβ plaques is proposed to be initiated by seeding the inoculated amyloid β (Aβ) peptides in the brain. Like the misfolded scrapie prion protein (PrP(Sc)) in prion diseases, Aβ in AD shows a certain degree of resistance to protease digestion while the biochemical basis for protease resistance of Aβ remains poorly understood. Using in vitro assays, histoblotting, and electron microscopy, we characterize the biochemical and morphological features of synthetic Aβ peptides and Aβ isolated from AD brain tissues. Consistent with previous observations, monomeric and oligomeric Aβ species extracted from AD brains are insoluble in detergent buffers and resistant to digestions with proteinase K (PK). Histoblotting of AD brain tissue sections exhibits an increased Aβ immunoreactivity after digestion with PK. In contrast, synthetic Aβ40 and Aβ42 are soluble in detergent buffers and fully digested by PK. Electron microscopy of Aβ40 and Aβ42 synthetic peptides shows that both species of Aβ form mature fibrils. Those generated from Aβ40 are longer but less numerous than those made of Aβ42. When spiked into human brain homogenates, both Aβ40 and Aβ42 acquire insolubility in detergent and resistance to PK. Our study favors the hypothesis that the human brain may contain cofactor(s) that confers the synthetic Aβ peptides PrP(Sc)-like physicochemical properties

    Transient Analysis of the Gas-Liquid Two Phase Flow in Long-Distance Water Pipelines

    No full text

    Effect of Ta addition on the fuzz formation of additively manufactured W based materials

    No full text
    As a divertor plasma-facing material, W will experience the high flux plasma irradiation. Especially, severe surface morphology change like fuzz formation can be induced by the He plasma irradiation. In this study, the fuzz formation on additively manufactured W and W-Ta was investigated. Rolled W, laser powder bed fused (LPBFed) W and W-Ta were exposed to high flux (~1023m-2s-1) He plasma in the linear plasma generator Magnum-PSI with ion energy 12-13 eV at 1273 K. The mean thickness of the fuzz at grain interiors of rolled W, LPBFed W and W-Ta was measured as 0.37 um, 0.71 um and 0.23 um, respectively. The fuzz suppression in LPBFed W-Ta can be attributed to the synergetic effect of solid-solution, dislocation, and secondary phase nanoparticles. Abnormally grown fuzz was observed near the pre-existing cracks of LPBFed W, while no such structure was found in LPBFed W-Ta. It is found that dislocations play a crucial role in inhibiting fuzz growth. This is confirmed by the difference of fuzz structure in rolled W and LPBFed W, where rolled W has a much greater dislocation density compare to LPBFed W. This work suggests that the fuzz growth kinetics may be tuned by tailoring the microstructures using the LPBF technique

    Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development

    No full text
    As a complex wall system in flowering plants, the pollen outer wall mainly contains aliphatic sporopollenin; however, the mechanism for synthesizing these lipidic precursors during pollen development remains less well understood. Here, we report on the function of the rice tapetum-expressing TDR (Tapetum Degeneration Retardation) gene in aliphatic metabolism and its regulatory role during rice pollen development. The observations of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses suggested that pollen wall formation was significantly altered in the tdr mutant. The contents of aliphatic compositions of anther were greatly changed in the tdr mutant revealed by GC-MS (gas chromatography-mass spectrometry) testing, particularly less accumulated in fatty acids, primary alcohols, alkanes and alkenes, and an abnormal increase in secondary alcohols with carbon lengths from C29 to C35 in tdr. Microarray data revealed that a group of genes putatively involved in lipid transport and metabolism were significantly altered in the tdr mutant, indicating the critical role of TDR in the formation of the pollen wall. Also, a wide range of genes (236 in total-154 up-regulated and 82 down-regulated) exhibited statistically significant expressional differences between wild-type and tdr. In addition to its function in promoting tapetum PCD, TDR possibly plays crucial regulatory roles in several basic biological processes during rice pollen development.Da-Sheng Zhang, Wan-Qi Liang, Zheng Yuan, Na Li, Jing Shi, JueWang, Yu-Min Liu, Wen-Juan Yu and Da-Bing Zhan

    Growth mechanism of subsurface hydrogen cavities in tungsten exposed to low-energy high-flux hydrogen plasma

    No full text
    Due to a lack of direct experimental results, the detailed mechanisms that govern the blistering behavior of tungsten (W) exposed to ITER-relevant condition in nuclear fusion remain unclear. The growth mechanism of hydrogen (H) blisters is one example. In this work, recrystallized W was exposed to H plasma at 50 eV, 1.5×1026m−2, and 573 K. Transmission electron microscopy (TEM) samples were prepared using plasma-focused ion beam (FIB) followed by flash-polishing to effectively remove surface damages induced by FIB. The TEM images revealed that the general blisters observed on the exposed surface are associated with underlying cavities. A considerable amount of dislocations were found in the vicinity of the cavities. Prismatic dislocation loop arrays were observed, including small size 'coffee-bean' prismatic loops and large size prismatic loops. Near the tip of surfaces cavities, evidences for the emission of shear loops were also found. Based on the experimental findings, a multi-stage growth mechanism of H cavities was proposed. The loop-punching mechanism is operative for both very small cavities and cavities with sizes larger than several hundreds of nanometers. Whereas at intermediate sizes, cavities grow by emitting shear loops from the cavity tip
    corecore