30 research outputs found
Do functional traits improve prediction of predation rates for a disparate group of aphid predators?
Aphid predators are a systematically disparate group of arthropods united on the basis that they consume aphids as part of their diet. In Europe, this group includes Araneae, Opiliones, Heteroptera, chrysopids, Forficulina, syrphid larvae, carabids, staphylinids, cantharids and coccinellids. This functional group has no phylogenetic meaning but was created by ecologists as a way of understanding predation, particularly for conservation biological control. We investigated whether trait-based approaches could bring some cohesion and structure to this predator group. A taxonomic hierarchy-based null model was created from taxonomic distances in which a simple multiplicative relationship described the Linnaean hierarchies (species, genera, etc.) of fifty common aphid predators. Using the same fifty species, a functional groups model was developed using ten behavioural traits (e.g. polyphagy, dispersal, activity, etc.) to describe the way in which aphids were predated in the field. The interrelationships between species were then expressed as dissimilarities within each model and separately analysed using PROXSCAL, a multidimensional scaling (MDS) program. When ordinated using PROXSCAL and then statistically compared using Procrustes analysis, we found that only 17% of information was shared between the two configurations. Polyphagy across kingdoms (i.e. predatory behaviour across animal, plant and fungi kingdoms) and the ability to withstand starvation over days, weeks and months were particularly divisive within the functional groups model. Confirmatory MDS indicated poor prediction of aphid predation rates by the configurations derived from either model. The counterintuitive conclusion was that the inclusion of functional traits, pertinent to the way in which predators fed on aphids, did not lead to a large improvement in the prediction of predation rate when compared to the standard taxonomic approach
Insights into aphid prey consumption by ladybirds: Optimising field sampling methods and primer design for High Throughput Sequencing
Elucidating the diets of insect predators is important in basic and applied ecology, such as for improving the effectiveness of conservation biological control measures to promote natural enemies of crop pests. Here, we investigated the aphid diet of two common aphid predators in Central European agroecosystems, the native Coccinella septempunctata (Linnaeus) and the invasive Harmonia axyridis (Pallas; Coleoptera: Coccinellidae) by means of high throughput sequencing (HTS). For acquiring insights into diets of mobile flying insects at landscape scale minimizing trapping bias is important, which imposes methodological challenges for HTS. We therefore assessed the suitability of three field sampling methods (sticky traps, pan traps and hand-collection) as well as new aphid primers for identifying aphid prey consumption by coccinellids through HTS. The new aphid primers facilitate identification to species level in 75% of the European aphid genera investigated. Aphid primer specificity was high in silico and in vitro but low in environmental samples with the methods used, although this could be improved in future studies. For insect trapping we conclude that sticky traps are a suitable method in terms of minimizing sampling bias, contamination risk and trapping success, but compromise on DNA-recovery rate. The aphid diets of both field-captured ladybird species were dominated by Microlophium carnosum, the common nettle aphid. Another common prey was Sitobion avenae (cereal aphid), which got more often detected in C. septempunctata compared to H. axyridis. Around one third of the recovered aphid taxa were common crop pests. We conclude that sampling methodologies need constant revision but that our improved aphid primers offer currently one of the best solutions for broad screenings of coccinellid predation on aphids
The diet of red-throated divers (Gavia stellata) overwintering in the German Bight (North Sea) analysed using molecular diagnostics
In Europe, the German Bight is one of the most important non-breeding areas for protected red-throated divers (Gavia stellata). It is unclear what attracts the birds to this area, especially as the food composition of seabirds outside the breeding season is notoriously difficult to study. To obtain information on prey species composition of red-throated divers in this area, faecal samples from 34 birds caught alive were analysed using DNA metabarcoding. Prey DNA was detected in 85% of the samples with a mean number of 4.2 ± 0.7 taxa per sample (n = 29). Altogether, we found a broad prey spectrum with 19 fish taxa from 13 families dominated by five groups: clupeids, mackerel, gadoids, flatfish and sand lances with clupeids being the most frequently detected prey. Our results indicate that red-throated divers are generalist opportunistic feeders in the German Bight, but pelagic schooling fish that aggregate at frontal zones and have a high energetic value might be favoured. Atlantic mackerel appears to be a more important prey for red-throated divers in this area than previously thought. The precision achievable using metabarcoding has revealed a number of prey species that are consumed by red-throated divers in the German Bight, which helps to explain the selection of this area by divers in winter and spring
Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation
Generalist predators and parasitoids are considered to be important regulators of aphids. The former not only feed on these pests, but might also consume parasitoids at all stages of development. This direct or coincidental interference affects the natural control of aphids, the scale of which is largely unknown, and it has rarely been examined under natural conditions. Here, molecular diagnostics were used to track trophic interactions in an aphid-parasitoid-generalist predator community during the build-up of a cereal aphid population. We found that generalist predators, principally carabid and staphylinid beetles as well as linyphiid spiders, had strong trophic links to both parasitoids and aphids. Remarkably, more than 50% of the parasitoid DNA detected in predators stems from direct predation on adult parasitoids. The data also suggest that coincidental intraguild predation is common too. Generalist predators, hence, disrupt parasitoid aphid control, although the levels at which the predators feed on pests and parasitoids seem to vary significantly between predator taxa. Our results suggest that taxon-specific trophic interactions between natural enemies need to be considered to obtain a more complete understanding of the route to effective conservation biological control