12 research outputs found

    Multi‐proxy analyses of Late Cretaceous coprolites from Germany

    Get PDF
    A total of 462 coprolites from three localities exposing Upper Cretaceous deposits in the MĂŒnster Basin, northwestern Germany, have been subjected to an array of analytical techniques, with the aim of elucidating ancient trophic structures and predator–prey interactions. The phosphatic composition, frequent bone inclusions, size and morphology collectively suggest that most, if not all, coprolites were produced by carnivorous (predatory or scavenging) vertebrates. The bone inclusions further indicate that the coprolite producers preyed principally upon fish. Putative host animals include bony fish, sharks and marine reptiles – all of which have been previously recorded from the MĂŒnster Basin. The presence of borings and other traces on several coprolites implies handling by coprophagous organisms. Remains of epibionts are also common, most of which have been identified as the encrusting bivalve Atreta. Palynological analyses of both the coprolites and host rocks reveal a sparse assemblage dominated by typical Late Cretaceous dinoflagellates, and with sub‐ordinate fern spores, conifer pollen grains and angiosperm pollen grains. The dinoflagellate key taxon Exochosphaeridium cenomaniense corroborates a Cenomanian age for the Plenus Marl, from which most studied coprolites derive. The findings of this study highlight the potential of a multiproxy approach when it comes to unravelling the origin, composition and importance of coprolites in palaeoecosystem analyses.MEE and JL acknowledge the Swedish Research Council for funding. AL acknowledges the Royal Physiographic Society of Lund for funding. MQ is funded by the Department of Organismal Biology (Uppsala University). BWR acknowledges the Department of Forensic Medicine, Copenhagen University. VV acknowledges funding from the Lund University Carbon Cycle Centre (LUCCI)</p

    Knickpoints and crescentic bedform interactions in submarine channels

    No full text
    Submarine channels deliver globally important volumes of sediments, nutrients, contaminants and organic carbon into the deep sea. Knickpoints are significant topographic features found within numerous submarine channels, which most likely play an important role in channel evolution and the behaviour of the submarine sediment-laden flows (turbidity currents) that traverse them. Although prior research has linked supercritical turbidity currents to the formation of both knickpoints and smaller crescentic bedforms, the relationship between flows and the dynamics of these seafloor features remains poorly constrained at field-scale. This study investigates the distribution, variation and interaction of knickpoints and crescentic bedforms along the 44km long submarine channel system in Bute Inlet, British Columbia. Wavelet analyses on a series of repeated bathymetric surveys reveal that the floor of the submarine channel is composed of a series of knickpoints that have superimposed, higher-frequency, crescentic bedforms. Individual knickpoints are separated by hundreds to thousands of metres, with the smaller superimposed crescentic bedforms varying in wavelengths from ca 16m to ca 128m through the channel system. Knickpoint migration is driven by the passage of frequent turbidity currents, and acts to redistribute and reorganize the crescentic bedforms. Direct measurements of turbidity currents indicate the seafloor reorganization caused by knickpoint migration can modify the flow field and, in turn, control the location and morphometry of crescentic bedforms. A transect of sediment cores obtained across one of the knickpoints show sand–mud laminations of deposits with higher aggradation rates in regions just downstream of the knickpoint. The interactions between flows, knickpoints and bedforms that are documented here are important because they likely dominate the character of preserved submarine channel-bed deposits
    corecore