4 research outputs found

    Effects of artepillin C on model membranes displaying liquid immiscibility

    No full text
    It has been hypothesized that the therapeutic effects of artepillin C, a natural compound derived from Brazilian green propolis, are likely related to its partition in the lipid bilayer component of biological membranes. To test this hypothesis, we investigated the effects of the major compound of green propolis, artepillin C, on model membranes (small and giant unilamelar vesicles) composed of ternary lipid mixtures containing cholesterol, which display liquid-ordered (lo) and liquid-disordered (ld) phase coexistence. Specifically, we explored potential changes in relevant membrane parameters upon addition of artepillin C presenting both neutral and deprotonated states by means of small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and confocal and multiphoton excitation fluorescence microscopy. Thermotropic analysis obtained from DSC experiments indicated a loss in the lipid cooperativity of lo phase at equilibrium conditions, while at similar conditions spontaneous formation of unilamellar vesicles from SAXS experiments showed that deprotonated artepillin C preferentially located at the surface of the membrane. Time-resolved experiments using fluorescence microscopy showed that at doses above 100 µM, artepillin C in its neutral state interacted with both liquid-ordered and liquid-disordered phases, inducing curvature stress and promoting dehydration at the membrane interface

    Interaction of Artepillin C with model membranes

    Get PDF
    Green propolis, a mixture of beeswax and resinous compounds processed by Apis mellifera, displays several pharmacological properties. Artepillin C, the major compound in green propolis, consists of two prenylated groups bound to a phenyl group. Several studies have focused on the therapeutic effects of Artepillin C, but there is no evidence that it interacts with amphiphilic aggregates to mimic cell membranes. We have experimentally and computationally examined the interaction between Artepillin C and model membranes composed of dimyristoylphosphatidylcholine (DMPC) because phosphatidylcholine (PC) is one of the most abundant phospholipids in eukaryotic cell membranes. PC is located in both outer and inner leaflets and has been used as a simplified membrane model and a non-specific target to study the action of amphiphilic molecules with therapeutic effects. Experimental results indicated that Artepillin C adsorbed onto the DMPC monolayers. Its presence in the lipid suspension pointed to an increased tendency toward unilamellar vesicles and to decreased bilayer thickness. Artepillin C caused point defects in the lipid structure, which eliminated the ripple phase and the pre-transition in thermotropic chain melting. According to molecular dynamics (MD) simulations, (1) Artepillin C aggregated in the aqueous phase before it entered the bilayer; (2) Artepillin C was oriented along the direction normal to the surface; (3) the negatively charged group on Artepillin C was accommodated in the polar region of the membrane; and (4) thinner regions emerged around the Artepillin C molecules. These results help an understanding of the molecular mechanisms underlying the biological action of propolis

    Effects of artepillin C on model membranes displaying liquid immiscibility

    No full text
    It has been hypothesized that the therapeutic effects of artepillin C, a natural compound derived from Brazilian green propolis, are likely related to its partition in the lipid bilayer component of biological membranes. To test this hypothesis, we investigated the effects of the major compound of green propolis, artepillin C, on model membranes (small and giant unilamelar vesicles) composed of ternary lipid mixtures containing cholesterol, which display liquid-ordered (lo) and liquid-disordered (ld) phase coexistence. Specifically, we explored potential changes in relevant membrane parameters upon addition of artepillin C presenting both neutral and deprotonated states by means of small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and confocal and multiphoton excitation fluorescence microscopy. Thermotropic analysis obtained from DSC experiments indicated a loss in the lipid cooperativity of lo phase at equilibrium conditions, while at similar conditions spontaneous formation of unilamellar vesicles from SAXS experiments showed that deprotonated artepillin C preferentially located at the surface of the membrane. Time-resolved experiments using fluorescence microscopy showed that at doses above 100 µM, artepillin C in its neutral state interacted with both liquid-ordered and liquid-disordered phases, inducing curvature stress and promoting dehydration at the membrane interface
    corecore