220 research outputs found
Information Invariance and Quantum Probabilities
We consider probabilistic theories in which the most elementary system, a
two-dimensional system, contains one bit of information. The bit is assumed to
be contained in any complete set of mutually complementary measurements. The
requirement of invariance of the information under a continuous change of the
set of mutually complementary measurements uniquely singles out a measure of
information, which is quadratic in probabilities. The assumption which gives
the same scaling of the number of degrees of freedom with the dimension as in
quantum theory follows essentially from the assumption that all physical states
of a higher dimensional system are those and only those from which one can
post-select physical states of two-dimensional systems. The requirement that no
more than one bit of information (as quantified by the quadratic measure) is
contained in all possible post-selected two-dimensional systems is equivalent
to the positivity of density operator in quantum theory.Comment: 8 pages, 1 figure. This article is dedicated to Pekka Lahti on the
occasion of his 60th birthday. Found. Phys. (2009
Sudden switch of generalized Lieb-Robinson velocity in a transverse field Ising spin chain
The Lieb-Robinson theorem states that the speed at which the correlations
between two distant nodes in a spin network can be built through local
interactions has an upper bound, which is called the Lieb-Robinson velocity.
Our central aim is to demonstrate how to observe the Lieb-Robinson velocity in
an Ising spin chain with a strong transverse field. We adopt and compare four
correlation measures for characterizing different types of correlations, which
include correlation function, mutual information, quantum discord, and
entanglement of formation. We prove that one of correlation functions shows a
special behavior depending on the parity of the spin number. All the
information-theoretical correlation measures demonstrate the existence of the
Lieb-Robinson velocity. In particular, we find that there is a sudden switch of
the Lieb-Robinson speed with the increasing of the number of spin
Quantum Correlation in One-dimensional Extend Quantum Compass Model
We study the correlations in the one-dimensional extended quantum compass
model in a transverse magnetic field. By exactly solving the Hamiltonian, we
find that the quantum correlation of the ground state of one-dimensional
quantum compass model is vanishing. We show that quantum discord can not only
locate the quantum critical points, but also discern the orders of phase
transitions. Furthermore, entanglement quantified by concurrence is also
compared.Comment: 8 pages, 14 figures, to appear in Eur. Phys. J.
On Relativistic Quantum Information Properties of Entangled Wave Vectors of Massive Fermions
We study special relativistic effects on the entanglement between either
spins or momenta of composite quantum systems of two spin-1/2 massive
particles, either indistinguishable or distinguishable, in inertial reference
frames in relative motion. For the case of indistinguishable particles, we
consider a balanced scenario where the momenta of the pair are well-defined but
not maximally entangled in the rest frame while the spins of the pair are
described by a one-parameter () family of entangled bipartite states. For
the case of distinguishable particles, we consider an unbalanced scenario where
the momenta of the pair are well-defined and maximally entangled in the rest
frame while the spins of the pair are described by a one-parameter ()
family of non-maximally entangled bipartite states. In both cases, we show that
neither the spin-spin () nor the momentum-momentum () entanglements
quantified by means of Wootters' concurrence are Lorentz invariant quantities:
the total amount of entanglement regarded as the sum of these entanglements is
not the same in different inertial moving frames. In particular, for any value
of the entangling parameters, both and -entanglements are attenuated
by Lorentz transformations and their parametric rates of change with respect to
the entanglements observed in a rest frame have the same monotonic behavior.
However, for indistinguishable (distinguishable) particles, the change in
entanglement for the momenta is (is not) the same as the change in entanglement
for spins. As a consequence, in both cases, no entanglement compensation
between spin and momentum degrees of freedom occurs.Comment: 21 pages, 8 figure
Why are clams steamed with wine in Mediterranean cuisine?
Wine is renowned for its rich content of polyphenols, including resveratrol (Res), known for their health promoting properties. Steamed clam with wine, a popular Mediterranean delicacy that highlights the role of wine as a key ingredient. However, despite these benefits, resveratrol's low bioavailability poses challenges. Could the process of steaming together with clam alter the digestive fate of resveratrol from wine? This study explores the potential of proteoglycan-based nanoparticles from freshwater clam (CFNPs) as a delivery vehicle for enhancing the stability and bioavailability of resveratrol, compared with wine and free Res' solution, aiming to elucidate mechanisms facilitating Res' absorption. The results demonstrated that CFNPs can effectively encapsulate Res with an efficiency over 70%, leading to a uniform particle size of 70.5±0.1 nm (PDI < 0.2). Resveratrol loaded in CFNPs (CFNPs-Res) exhibited an improved antioxidant stability under various conditions, retaining over 90% of antioxidant capacity after three-day storage at room temperature. The controlled-release profile of Res loaded in CFNPs fits both first and Higuchi order kinetics and was more desirable than that of wine and the free Res. Examined by the simulated gastrointestinal digestion, CFNPs-Res showed a significantly higher bioaccessibility and antioxidant retention compared to free Res and the wines. The discovery and use of food derived nanoparticles to carry micronutrients and antioxidants could lead to a shift in functional food design and nutritional advice, advocating much more attention on these entities over solely conventional molecules
Various correlations in a Heisenberg XXZ spin chain both in thermal equilibrium and under the intrinsic decoherence
In this paper we discuss various correlations measured by the concurrence
(C), classical correlation (CC), quantum discord (QD), and geometric measure of
discord (GMD) in a two-qubit Heisenberg XXZ spin chain in the presence of
external magnetic field and Dzyaloshinskii-Moriya (DM) anisotropic
antisymmetric interaction. Based on the analytically derived expressions for
the correlations for the cases of thermal equilibrium and the inclusion of
intrinsic decoherence, we discuss and compare the effects of various system
parameters on the correlations in different cases. The results show that the
anisotropy Jz is considerably crucial for the correlations in thermal
equilibrium at zero temperature limit but ineffective under the consideration
of the intrinsic decoherence, and these quantities decrease as temperature T
rises on the whole. Besides, J turned out to be constructive, but B be
detrimental in the manipulation and control of various quantities both in
thermal equilibrium and under the intrinsic decoherence which can be avoided by
tuning other system parameters, while D is constructive in thermal equilibrium,
but destructive in the case of intrinsic decoherence in general. In addition,
for the initial state , all
the correlations except the CC, exhibit a damping oscillation to a stable value
larger than zero following the time, while for the initial state , all the correlations monotonously
decrease, but CC still remains maximum. Moreover, there is not a definite
ordering of these quantities in thermal equilibrium, whereas there is a
descending order of the CC, C, GMD and QD under the intrinsic decoherence with
a nonnull B when the initial state is .Comment: 8 pages, 7 figure
- …