669 research outputs found

    Comments on Noncommutative Sigma Models

    Get PDF
    We review the derivation of a noncommutative version of the nonlinear sigma model on \CPn and it's soliton solutions for finite Ξ\theta emphasizing the similarities it bears to the GMS scalar field theory. It is also shown that unlike the scalar theory, some care needs to be taken in defining the topological charge of BPS solitons of the theory due to nonvanishing surface terms in the energy functional. Finally it is shown that, like its commutative analogue, the noncommutative \CPn-model also exhibits a non-BPS sector. Unlike the commutative case however, there are some surprises in the noncommutative case that merit further study.Comment: 22 pages, 4 figures, LaTeX (JHEP3), Minor changes, Discussion expanded and references adde

    Riemann Surfaces of genus g with an automorphism of order p prime and p>g

    Full text link
    The present work completes the classification of the compact Riemann surfaces of genus g with an analytic automorphism of order p (prime number) and p > g. More precisely, we construct a parameteriza- tion space for them, we compute their groups of uniformization and we compute their full automorphism groups. Also, we give affine equations for special cases and some implications on the components of the singular locus of the moduli space of smooth curves of genus g.Comment: 28 pages, 5 figure

    Moduli-Space Dynamics of Noncommutative Abelian Sigma-Model Solitons

    Get PDF
    In the noncommutative (Moyal) plane, we relate exact U(1) sigma-model solitons to generic scalar-field solitons for an infinitely stiff potential. The static k-lump moduli space C^k/S_k features a natural K"ahler metric induced from an embedding Grassmannian. The moduli-space dynamics is blind against adding a WZW-like term to the sigma-model action and thus also applies to the integrable U(1) Ward model. For the latter's two-soliton motion we compare the exact field configurations with their supposed moduli-space approximations. Surprisingly, the two do not match, which questions the adiabatic method for noncommutative solitons.Comment: 1+15 pages, 2 figures; v2: reference added, to appear in JHE

    A Quantum-Mechanical Equivalent-Photon Spectrum for Heavy-Ion Physics

    Get PDF
    In a previous paper, we calculated the fully quantum-mechanical cross section for electromagnetic excitation during peripheral heavy-ion collisions. Here, we examine the sensitivity of that cross section to the detailed structure of the projectile and target nuclei. At the transition energies relevant to nuclear physics, we find the cross section to be weakly dependent on the projectile charge radius, and to be sensitive to only the leading momentum-transfer dependence of the target transition form factors. We exploit these facts to derive a quantum-mechanical ``equivalent-photon spectrum'' valid in the long-wavelength limit. This improved spectrum includes the effects of projectile size, the finite longitudinal momentum transfer required by kinematics, and the response of the target nucleus to the off-shell photon.Comment: 19 pages, 5 figure

    Sensitivity of the g-mode frequencies to pulsation codes and their parameters

    Full text link
    From the recent work of the Evolution and Seismic Tools Activity (ESTA, Lebreton et al. 2006; Monteiro et al. 2008), whose Task 2 is devoted to compare pulsational frequencies computed using most of the pulsational codes available in the asteroseismic community, the dependence of the theoretical frequencies with non-physical choices is now quite well fixed. To ensure that the accuracy of the computed frequencies is of the same order of magnitude or better than the observational errors, some requirements in the equilibrium models and the numerical resolutions of the pulsational equations must be followed. In particular, we have verified the numerical accuracy obtained with the Saclay seismic model, which is used to study the solar g-mode region (60 to 140Ό\muHz). We have compared the results coming from the Aarhus adiabatic pulsation code (ADIPLS), with the frequencies computed with the Granada Code (GraCo) taking into account several possible choices. We have concluded that the present equilibrium models and the use of the Richardson extrapolation ensure an accuracy of the order of 0.01ΌHz0.01 \mu Hz in the determination of the frequencies, which is quite enough for our purposes.Comment: 10 pages, 5 figures, accepted in Solar Physic

    Spelling errors and keywords in born-digital data: a case study using the Teenage Health Freak Corpus

    Get PDF
    The abundance of language data that is now available in digital form, and the rise of distinct language varieties that are used for digital communication, means that issues of non-standard spellings and spelling errors are, in future, likely to become more prominent for compilers of corpora. This paper examines the effect of spelling variation on keywords in a born-digital corpus in order to explore the extent and impact of this variation for future corpus studies. The corpus used in this study consists of e-mails about health concerns that were sent to a health website by adolescents. Keywords are generated using the original version of the corpus and a version with spelling errors corrected, and the British National Corpus (BNC) acts as the reference corpus. The ranks of the keywords are shown to be very similar and, therefore, suggest that, depending on the research goals, keywords could be generated reliably without any need for spelling correction

    Living for the weekend: youth identities in northeast England

    Get PDF
    Consumption and consumerism are now accepted as key contexts for the construction of youth identities in de-industrialized Britain. This article uses empirical evidence from interviews with young people to suggest that claims of `new community' are overstated, traditional forms of friendship are receding, and increasingly atomized and instrumental youth identities are now being culturally constituted and reproduced by the pressures and anxieties created by enforced adaptation to consumer capitalism. Analysis of the data opens up the possibility of a critical rather than a celebratory exploration of the wider theoretical implications of this process

    Prospects for asteroseismology

    Full text link
    The observational basis for asteroseismology is being dramatically strengthened, through more than two years of data from the CoRoT satellite, the flood of data coming from the Kepler mission and, in the slightly longer term, from dedicated ground-based facilities. Our ability to utilize these data depends on further development of techniques for basic data analysis, as well as on an improved understanding of the relation between the observed frequencies and the underlying properties of the stars. Also, stellar modelling must be further developed, to match the increasing diagnostic potential of the data. Here we discuss some aspects of data interpretation and modelling, focussing on the important case of stars with solar-like oscillations.Comment: Proc. HELAS Workshop on 'Synergies between solar and stellar modelling', eds M. Marconi, D. Cardini & M. P. Di Mauro, Astrophys. Space Sci., in the press Revision: correcting abscissa labels on Figs 1 and

    Numerical properties of isotrivial fibrations

    Get PDF
    In this paper we investigate the numerical properties of relatively minimal isotrivial fibrations \varphi \colon X \lr C, where XX is a smooth, projective surface and CC is a curve. In particular we prove that, if g(C)≄1g(C) \geq 1 and XX is neither ruled nor isomorphic to a quasi-bundle, then K_X^2 \leq 8 \chi(\mO_X)-2; this inequality is sharp and if equality holds then XX is a minimal surface of general type whose canonical model has precisely two ordinary double points as singularities. Under the further assumption that KXK_X is ample, we obtain K_X^2 \leq 8 \chi(\mO_X)-5 and the inequality is also sharp. This improves previous results of Serrano and Tan.Comment: 30 pages. Final version, to appear in Geometriae Dedicat

    Supersymmetric Seesaw without Singlet Neutrinos: Neutrino Masses and Lepton-Flavour Violation

    Get PDF
    We consider the supersymmetric seesaw mechanism induced by the exchange of heavy SU(2)_W triplet states, rather than `right-handed' neutrino singlets, to generate neutrino masses. We show that in this scenario the neutrino flavour structure tested at low-energy in the atmospheric and solar neutrino experiments is directly inherited from the neutrino Yukawa couplings to the triplets. This allows us to predict the ratio of the tau --> mu gamma (or tau --> e gamma) and mu --> e gamma decay rates in terms of the low-energy neutrino parameters. Moreover, once the model is embedded in a grand unified model, quark-flavour violation can be linked to lepton-flavour violation.Comment: 26 LaTeX pages, 10 postscript figures, uses epsfig and axodraw. Comments and references adde
    • 

    corecore