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Spelling Errors and Keywords in Born-Digital Data: A Case Study using the Teenage Health
Freak Corpus

Abstract

The abundance of language data now available in digital form and the rise of particular
language varieties used for digital communication means that issues of non-standard spelling
and spelling errors are likely to become a more prominent issue for compilers of such
corpora. This paper examines the effect of spelling variation on keywords in a born-digital
corpus in order to explore the extent and impact of this variation for future corpus studies.
The corpus used in this study consists of emails about heath concerns sent to a health website
by adolescents. Keywords are generated using the original version of the corpus and a version
with spelling errors corrected with the BNC as the reference corpus. The ranks of the
keywords are shown to be very similar and therefore suggest that, depending on the research
goals, keywords could be generated reliably without any need for spelling correction.
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1. Introduction
Corpora are more frequently being created from texts taken from the web and therefore the
issue of spelling errors and non-standard spelling are an increasing issue for corpus
compilers. Unlike corpora built with published, well-edited materials the increasing spread of
user generated content present in the web 2.0 world presents new challenges to the corpus
creator in terms of #ypos as this material is not edited to the standard of traditional print media
or even large company websites. In addition the same way that non-standard spelling poses
problems for corpus researchers working with historical corpora (see Baron et al. 2009) the
use of non-standard spelling in e-language is reintroducing the problem for modern corpora.
The use of chat and text abbreviations is widespread in the internet community and
innovations are always being introduced (Crystal 2006, 2011; Baron 2008). This paper aims
to investigate the impact that spelling errors and non-standard spelling may have on
keywords generated with a born-digital corpus.

The corpus used in this case study is comprised of health questions sent to Doctor
Ann through the Ask Doctor Ann facility on the Teenage Health Freak website.! The
messages date from January 2004 to December 2009, a period of six years. With the
exception of the removal of very similar messages sent within a small time frame the corpus
is unedited and contains all messages sent to the website during the time period in question,
only a small number of which are published on the website with answers from the medical
staff. The messages themselves are typed directly into a web form and other than the
automatic removal of personal details such as email addresses the corpus contains exactly
what was typed into the form by the users. In total the corpus contains 113,480 messages and

! http://www .teenagehealthfreak.org



2,217,919 words. This corpus is unique in many respects and is of particular interest to the
medical community since the questions posed are unsolicited and the users of the site are able
to ask about whatever area of their health is concerning them. The fact that the corpus is
generated by adolescents is also of interest to the linguistic community. Adolescents are
typically seen as language innovators (Stenstrom et al. 2002) and this is no exception in the
on-line community (Crystal 2006:94)

Keywords are the starting point for a great many lexically oriented corpus studies
(Scott and Tribble, 2006: 55-72; Baker 2006; Harvey et al. 2008). They provide a good segue
into the study of a large corpus highlighting words and topics which are unusually frequent in
the data and therefore may warrant further investigation. Such studies are classed by Rayson
as type III corpus studies which are categorised by ‘the use of corpus-based comparative
frequency evidence to drive the selection of words for further study’ (Rayson, 2008: 523).
Scott defines a keyword as ‘a word which occurs with unusual frequency in a given text... by
comparison with a reference corpus of some kind’ (Scott, 1997: 236). Statistical procedures
are used to determine whether the comparative frequencies of a word in the target and
reference corpora are significant enough to classify the word as key in the target corpus.
Several measures have been used to determine which words should be considered key
including the chi-squared test (Hofland and Johansson, 1982), Mann-Whitney test (Kilgarriff,
2001) and the T-score (Paquot and Bestgen, 2009). The most widely used statistical
procedure however is log-likelihood.

The log-likelihood statistic is calculated using the total counts for the word in
question in each of the corpora, the observed frequency, and the expected frequency which is
calculated to take account of the size of each of the corpora. Fundamental to the log-
likelihood statistic, as with all other measures mentioned above, are the word counts for each
of the words in both the target and reference corpora. If one of the corpora has problems with
non-standard spelling or contains a large volume of spelling errors the counts for the words
will be affected and consequently also the log-likelihood score. If for example the word what
occurs in the corpus with the standard spelling and also with the two chat style abbreviations
wat and wot then the overall counts for what in the target corpus will be reduced as it is being
represented by several different orthographical forms. This problem becomes even greater for
the statistical calculation if, as in the case here, only the target corpus contains such
inconsistencies. In this case the non-standard and incorrect spellings could dominate the
keyword list as they are not likely to be present in the reference corpus at all. This kind of
challenge is encountered in a variety of different corpora: historical corpora, for example, in
which spelling conventions were yet to be established (Baron et al. 2009), also regional
corpora where dialects are being represented (Kay, 2006) as well as born digital corpora
which use non-standard spelling as used in this research.

This paper first analyses the volume and type of spelling errors and non-standard
spellings found in the Teenage Health Freak corpus to establish the scale and nature of the
problem faced. The variant spelling in the corpus is then corrected as far as possible to create
a second normalised corpus. These two corpora are then compared with respect to the
keywords they produce against the same reference corpus in order to establish any
differences in keyword rank due to the spelling variation. In this paper the term spelling error
is used as an umbrella term for spelling error, deliberate non-standard spelling and other
abbreviations or acronyms used for words or phrases. This is done as a matter of convenience
and is not intended as any judgement on the language use itself.



2. Corpus Approaches to Spelling Variants and Errors

Interest in spelling variation in corpus linguistics has typically been focussed on historical
corpora and learner corpora. In historical corpora the problem is caused by a lack of
standardised spelling. Research by Baron et al. suggests that variant tokens make up between
35 percent and 40 percent of all tokens in English corpora from the period 1400 to 1550
gradually reducing to below 10 percent by 1650 (2009: 53). The problems that this level of
variation causes for part of speech tagging and subsequent semantic tagging using the online
tool Wmatrix (Rayson 2009)” are what inspired the creation of a VARD, a variant detection
tool (Archer et al., 2003; Rayson et al., 2007: 1). The latest version of VARD achieved
impressive results with historical corpora with precision over 90 percent and recall reaching
65 percent with sufficient training (Baron and Rayson, 2009: 14). Recently VARD has been
developed from a tool specifically designed to deal with historic English corpora to a tool that
can potentially be used to deal with any kind of spelling variation or error in corpora written
in any language (Baron and Rayson, 2009: 4-9, 13). VARD can be customised in several
ways, for example by changing the dictionary of accepted spellings or adding new letter
replacement rules, and can also be trained with a specific dataset (Baron and Rayson,
2009:9). The performance of VARD on a corpus of Children’s writing was much lower than
the figures achieved with historical corpora with a precision of around 80 percent but a recall
no higher than 20 percent. In this experiment the only customisation performed was to train
VARD with samples of the corpus and much better recall figures could be expected if all of
the customisation features of VARD had been employed (Baron and Rayson, 2009:19).

In learner corpora spelling errors are only one of several types of errors that are of
particular interest to the compilers and users of the data. Most of the work in identifying the
errors is done manually but a few tools have also been developed to assist with the process of
finding and correcting errors. A tool has been developed for computer assisted error
annotation, UCLEE (Université Catholique de Louvain Error Editor), but it functions to
speed up the manual process of mark-up rather than assist with the identification of errors
themselves (Dagneaux et al., 1998 :167-168). Rayson and Baron have also tested VARD’s
performance on learner corpora to see if it could be used to aid with error annotation (2011).
With training, as with the test on Children’s writing, they were able to achieve a very high
precision figure of 90.8 but the recall level was again much lower at 23.4. This is attributed in
this case to the large number of real world errors found in learner corpora which are not yet
handled by VARD (Rayson and Baron, 2011: 122).

Studies of modern born-digital data have tended not to address the issue of
normalising spelling variation as the studies have typically focussed on the innovations of
language and orthography used (Tagg, 2009; Ooi et al., 2007; Hoffman, 2007). In a study of
Singaporean English blogs Ooi et al. find the same kind of reduction in performance when
using Wmatrix’s semantic tagger as was found with historical corpora. In this study Wmatrix
is used to analyse two corpora one containing blogs written by teenagers and the other by
undergraduates. In total 3,712 types from the undergraduate corpus were left unclassified by
the semantic tagger and a much higher 11,137 types from the teenagers corpus. Rather than
considering any kind of pre-processing to normalise the corpus Ooi et al. (2007) suggest that
corpus tools like Wmatrix need to evolve to be able to deal with this new emerging form of
English. Tagg (2009) is also interested in the creative use of language but in this case with a

* WMatrix is an online tool for the analysis and comparison of corpora. In particular it facilitates part-of-speech
and semantic annotation of corpora which can then be analysed using a the same statistical procedure as is used
for keywords.



corpus of text messages. Although Tagg chose not to normalise the language for this
particular study she does note that some experimentation with retraining VARD on this data
suggests that its use could be possible with the corpus. In a later conference presentation the
latest version of VARD was used on the corpus with successful results (Tag et al., 2010).

3. Spelling Errors in the Teenage Health Freak Corpus

In order to gain an insight into the scale and type of spelling errors present in our corpus of
health questions from teenagers, 50 messages were sampled at random from each year in the
corpus (a total of 300 messages). These messages were manually checked for incorrect and
unconventionally spelled words and the nature of each spelling error was analysed. The
volume of spelling errors is summarised in Table 1. As the table shows based on this sample
study it is estimated that 7.6 percent of the words in the Teenage Health Freak corpus could
be incorrectly or unconventionally spelled. If the samples are representative of the whole
corpus this would amount to around 168,600 words. It is not common to report data regarding
spelling variation in electronic communication corpora but Tag et al. report figures from a
text message corpora which are similar to those found in the Teenage Health Freak data. As
part of a test of automated spelling normalisation with VARD a test sample is manually
corrected. The sample consisted of 2,430 messages containing a total of 41,342 words. Of
these words 3,166 required standardisation meaning 7.7 percent of the words in the sample
were incorrectly or unconventionally spelled (Tagg et al., 2010). In addition both corpora
found that while some messages contained a lot of unconventionally spelled words other
messages had no variation at all.

Table 1

The errors can be classified into five broad categories: chat-style abbreviations; phonetic
errors; typographical errors; deliberate errors for emphasis; and finally errors that didn’t fit
into any of the other categories. Chat-Style language includes abbreviations and acronyms
which might be expected in text messages or instant messaging: in our samples these include
the following transformations: u > you; 4 > for; cuz > because; sum > some. Typographical
errors are errors which are most likely to be caused by mistyping and include the following
examples: typographical iam > i am; resulst > results; alchohl > alcohol. Phonetic errors are
words which can reasonably be pronounced in the same way as the original word and are less
likely to have been caused by mistyping. In our sample this includes: probarbly > probably;
egsisting > existing; marige > marriage. The next category of emphasis is less of an error and
more of a manipulation of the language. However since this use of language poses the same
problems for keyword analysis as the other spelling errors it is considered here. The emphasis
category includes deliberate errors made for emphatic purposes. These are typically additions
of letters as in these examples from our sample messages: s0000 > so; yoooo > yo. The final
category includes everything that doesn’t fit into any of the other categories, in our samples
this includes only one example: pencise > penis.

Table 2

Table 2 shows the number of errors in each category present in our sample messages.
As the table shows the vast majority of errors are accounted for by typographical errors and
chat-style errors. The nature of chat-style errors should make correcting them relatively easy
as there is a great deal of internal consistency with this type of language use (see Tagg,
2009:136-8 for a summary of the use of such language in a text message corpus). An



interesting observation on spelling in general but which is particularly true of the use of chat-
style abbreviations is that there is huge difference between messages with some users
avoiding all chat-style language and others making full use of it. This may reflect the
familiarity of the user with instant messaging, forum writing and perhaps text messaging but
also reflects the choice of register considered appropriate for addressing medical questions to
Dr Ann which some selecting very formal registers and other much more informal. Compared
to chat-style errors the typographical errors are not as consistent. However along with the
phonetic errors the vast majority consist of a single omission, addition, deletion, substitution
or transposition. This means that distance based spelling detection algorithms may do a
reasonable job at identifying these errors (Jurafsky and Martin, 2000:144-6).

4. Spelling Correction Procedure

In order to try and correct the spellings in the corpus an evaluation of VARD was conducted
as this was the program used to regularise the spelling in Baron et al. (2009). At the time the
project started the latest version was VARD?2.2 which was still specifically aimed at the
regularisation of historical corpora although it had also been used for other language
varieties. Communication with Baron suggested that VARD2.3 would be better suited to our
data as many changes were being made in the automated processing to widen its application.
During the course of the project VARD2.3 was released but unfortunately the release date
was too far into the project for it to be used to correct the spelling for the research reported
here.

Instead of using a specifically designed tool the spelling was corrected with the help
of WordSmith Tools’ keyword procedure (Scott 2008). The main advantage of this procedure
is that it is well known among corpus linguists and is available in most of the standard
software tools available and would therefore be easily replicable for other corpora. The
written component of the BNC was selected as the reference corpus as this minimises the
number of non-standard tokens present in the reference corpus. As described above, the
keyword procedure works to highlight words which are unusually frequent in the target
corpus in comparison to their frequency in the reference corpus. Therefore any words which
are incorrectly spelled but occur in the same variant form frequently in our corpus were
present in the keyword list. The resulting keyword list was reviewed manually and any
variant forms which could be corrected to the same word in the vast majority of instances
were corrected. This analysis was supported by the use of Concordance lines to allow the
intended word to be determined from the context. In cases where the error could not, in most
cases, be corrected to a single word the word was not corrected and the error remained. Once
the whole list had been processed in this way a script was used to mark the errors and provide
their corrections. As the corpus was in XML the spelling corrections were indicated using the
Text Encoding Initiative (TEI) choice, sic and corr tags so that the original spelling was also
preserved. The resulting XML for each corrected word looks like this:

<choice>
<sic>plz</sic>
<corr>please</corr>
</choice>

Using this method 2,732 types were corrected which amounts to 88,542 tokens, just
over 50 percent of the predicted error total. The 2,732 incorrect types were corrected to just
900 types suggesting there could be a large impact on word frequencies. As missing



apostrophes have an effect on word tokenisation and therefore on frequencies and keywords,
they were also counted as spelling errors in this study. 46 of the corrected types only involved
missing apostrophes making the total number of types corrected that did not involve
apostrophes 2,686. This has a large effect on the total tokens corrected removing 35,077
leaving only 53,465 corrected tokens. Because of the large number of changes just involving
apostrophes the effects on keywords will be measured with and without the apostrophe
corrections made.

5. The Effects of Spelling Errors on Key Words

5.1. Methodology

The procedure for comparing the keyword lists was based on that used by Baron et al. (2009)
when comparing the effects of non-standardised spelling in early modern English on the
results of keyword analysis. In this paper Baron et al. use two statistical measures,
Spearman’s rank correlation coefficient and Kendall’s Tau rank correlation coefficient to
compare two keyword lists. These statistical measures both focus on differences in ranks but
they are sensitive to different types of movement within the ranked lists being compared. As
Spearman’s rho uses the squared difference in the ranks between the two lists (Conover,
1999: 287) this measure is more sensitive to movements over a greater distance within the
ranked lists and relatively insensitive to large numbers of small movements within the ranks.
In contrast Kenall’s tau is based on concordant and discordant pairs (Sprent and Smeeton,
2007: 318) and is therefore more sensitive to the volume of changes rather than the actual
difference between the two ranks and therefore the distance of the movement. In most cases
Spearman has been found to give a slightly higher figure than Kendall (Sprent and Smeeton,
2007: 323)

It should be noted here that Scott in his “frequently asked questions” for WordSmith 5.0
advises that it is unsafe to rely on rank order in keyword lists (Scott, no date). As log-
likelihood is a statistical measure of significance it is true that words are either key at the
specified p value or are not key. However, in practice, researchers must often resort to relying
on the top N keywords and in this regard changes in rank caused by spelling errors or a
change in reference corpus could have an impact on the focus of the research. Changes in
rank order also give a broad overview of the impact of such changes on the keyword lists.

The procedure used is outlined below.

* Generate keyword lists to compare using WordSmith Tools and specified parameters
for corrected and uncorrected spelling

* Remove any words not present in both of the resulting keyword lists

* Rank remaining entries in both lists from 1 to n (n will be the same for both lists)

* Use the ranks as the input to correlation graphs and statistical procedures

5.2. Effect on keyword lists

The British National Corpus was chosen as the reference corpus to test the effect of spelling
variants on the keyword lists. The keywords used in this section were all generated using
WordSmith Tools (Scott, 2008) using the log-likelihood statistical measure. The minimum
frequency threshold was 5 and the p value used was 0.000001. Keywords were generated
against the reference corpus for the Teenage Health Freak corpus based on the original
spelling, the fully corrected spelling, and the corrected spelling ignoring missing apostrophes.
The first thing to look at is the number of keywords generated for each version of the corpus
which is shown in Table 3 below.



Table 3

By correcting the spelling in the corpus the number of keywords generated is reduced by over
1,500. An examination of the words that are key only when the spelling errors have been
corrected show that they contain medical or medical related terms. In all of these cases
however, they occur in some alternatively spelled form in the keyword list based on the
uncorrected spelling so are not lost entirely even when the spelling is not corrected. Also as
Table 4 shows these words occur a long way down the keyword lists for both the original and
corrected spelling.

Table 4

The other words that are only present in the corrected spelling list also appear a long way
down the keyword list. Only four examples occur in the top 1,000 keywords and these also
occur in various spellings in the keyword list generated from the original spelling. These
words are shown in Table 5. In all these cases correcting the spelling from what is typically
multiple incorrect forms when added together means that the frequency becomes high enough
for the correctly spelled version to be considered key. Only deodorant occurs with the correct
spelling in both keyword lists but the correctly spelled version occurs considerably lower in
the original spelling list than the incorrect spellings do.

Table 5

The keywords which occur only in the list generated with original spelling are predominantly
examples of non-standard spelling and with the exception of some of the standard chat-style
abbreviations they tend to occur towards the bottom end of the keyword list. There would
however be a lot more keywords to analyse had the spelling not been corrected. In some
cases the correction of the spelling also makes a huge difference to the frequency count for
the word and therefore its rank in the keyword list. An example of such a word is
embarrassed which has multiple spellings as can be seen in Table 6.

Table 6

In the version of the corpus with the spelling corrected the word frequency for embarrassed is
596 making it 171 in the keyword list rank with a G2 value of 2,206.33. This is higher than
the highest entry in the original spelling keyword list where embarrased is ranked 368 with a
G2 value of 947.95 and considerably higher than the correctly spelled version which is
ranked 1,134 with a G2 value of only 156.97. It seems then, that even if correctly spelled
keywords are not lost altogether when the spelling errors remain in the corpus, the spelling
variation could make a difference to the ranks of the keywords. This was the hypothesis
which formed the basis of Baron et al.’s investigation into spelling variants in early modern
English and will also form the basis of our investigation.

The Spearman rank correlation coefficient and the Kendall correlation coefficient
were calculated between two pairs of keyword lists all generated using the BNC as the
reference corpus. The pairs were the original spelling and the fully corrected spelling, and the



original spelling against the corrected spelling ignoring missing apostrophes.’ An indication
of the type of correlation present in the data can be seen in Figure 1 and Figure 2. These
graphs suggest a very strong positive correlation in the keyword ranks. Anything above the
perfect line of correlation represent words that are spelled incorrectly, but in the same way, in
the Teenage Health Freak corpus so many times that the incorrect spelling is much higher in
the uncorrected keyword list than it is when it is corrected and compared to the correctly
spelled equivalent in the reference corpus. The strongest example of this in the corpus is the
word conscious (point 473, 1209) which is misspelled as concious so frequently in the corpus
that it ranks very high in the keyword list until it is corrected and therefore compared with the
actual frequency of the word in the reference corpus. Anything below the perfect line of
correlation represent words where, when all the spelling variants are corrected, they
collectively make a big enough difference to the frequency for them to move higher up the
keyword list for the corrected text, as with the example of embarrassed. It can also be seen
from the graphs that the later items towards the bottom of the ranked list are more affected
than those towards the top.

Figure 1

Figure 2
Table 7

Both Spearman’s rho and Kendall’s Tau return a number between -1 (a perfect
negative correlation) and +1 (a perfect positive correlation) with 0 being no correlation at all.
The results for these comparisons can be seen in Table 4. These numbers are both very close
to +1 suggesting a very positive correlation between the ranks of the keyword lists. Not
correcting missing apostrophes leads to a slightly better correlation than the fully corrected
text but both are very high. The critical tables for Spearman’s r stop at 30 degrees of freedom
and since we have many more than 30 samples the result of Spearman’s » can be converted to
a t-value and that checked with N-2 degrees of freedom against the critical values for ¢. In
both cases our degrees of freedom (1849 and 1893) are off the scale for p values of ¢ value
but both scores are much greater than the values needed at the highest degrees of freedom
available and therefore we can conclude that there is a significantly high correlation to
suggest that the spelling variants in the corpus make little difference to the ranks of the
keyword lists. These figures are certainly higher than those reported by Baron et al. whose
overall Spearman’s rho score for the Innsbruck Letter corpus in manually standardised and
original form was 0.705 and the Kendall’s Tau 0.530. This is to be expected given the much
higher rates of variation present in the Innsbruck Letter corpus. When comparing
automatically standardised (using VARD) and original texts over several decades the both
correlation scores were much higher and above 0.9 by the 1600s, figures are only reported in

* Butler (1985) says Spearman’s r should not be used if there are “a large number of tied ranks” (Butler, 1985:
147). In place of Spearman’s r the ranks should be used as input to the Pearson product-moment correlation
coefficient (the result of this calculation is however still known as Spearman’s r). In both cases here the number
of tied ranks is less than 25 percent of the total pairs in the study with no indication of what a “large number”
might be it was decided to calculate the statistic using both methods for completeness. In our data there proved
to be no difference in the calculations until the 7" or 8" decimal place so it was decided to report the results
from the straight Spearman’s r calculation for simplicity.



graphical form in this part of the study so it is not possible to give the highest correlation
reached in that study however Spearman is very close to +1 and Kendall over 0.9 (Baron et
al. 2009:58).

6. Conclusion

This case study demonstrates that even with born-digital data where the instances of spelling
errors and non-standard spelling are likely to be higher than in other written corpora (i.e.
newspaper or other print media corpora) spelling variation does not necessarily have a large
impact on the keywords generated. Although the volume of keywords generated was much
greater with the uncorrected version of the corpus the differences in the ranks of shared
words were very small. The words found to be key in the uncorrected keyword list and not in
the corrected keyword list tended to occur towards the bottom. They would, therefore, less of
a problem for research focussing on words towards the top of the list. In general we can
conclude that while correcting the spelling made a large difference to the ranks of some
words (for example embarrassed noted above) the overall effect on the keyword ranks is
small. So together with the fact even the correctly spelled technical terminology only present
in the corrected keyword list still appears in some form on the uncorrected list, this suggests
that for born-digital data the correction of spelling is not necessarily a central task before
corpus analysis can take place. Of course for other types of corpus analysis on born digital
data, such part-of-speech and semantic tagging that prompted the creation of a tool like
VARD, where spelling variation is a much more significant problem, might suffer the same
loss of accuracy as has been found with historical corpora.

More work is needed to establish whether the figure of 7% for non-standard spelling
in the Teenage Health Freak corpus and in Tagg’s text message corpus holds true for other
CMC corpora. This will be a key factor as to how generalisable the results of this study are.
While the range of messages in Teenage Health Freak corpus is quite wide there is a focus on
health concerns which is unlikely to be found in more general CMC corpora and this topical
focus may also contribute to the results seen in this study. The same research should be
repeated on more general CMC corpora to support the suggestion that spelling correction is
not of central importance in keyword studies of such data. The effort involved in such an
investigation is somewhat lessened now in the era of internet corpora and ‘big data’. In
addition it is possible that a more accurate method of error detection and correction might
show a much greater variation in key word rank since in this study the level of correction was
around 50 percent. Now that the VARD has been adapted to deal well with spelling variation
of non-standard Modern English, specifically CMC, it is possible that repeating this study on
a version of the corpus that has been automatically corrected using VARD would shed more
light on the impact of spelling on keyword rank. However, overall we suggest that this study
demonstrates that while non-standard spelling should be a concern to corpus researchers
working with born digital data, they can be confident in carrying out initial keyword based
investigations on the uncorrected data.
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Year No. of words No. of errors | Percentage errors

2004 1209 76 6.3
2005 1403 116 8.3
2006 758 89 11.7
2007 898 55 6.1
2008 1000 70 7.0
2009 871 60 6.9
All Years 6139 466 7.6

Table 1: volume of spelling errors in 300 sample messages from the THF corpus
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Error Class Total Occurrences

Typographical 257 (ignoring apostrophes 134)
Chat-Style 125
Phonetic 83
Emphasis 3
None 1

Table 2: classification of spelling errors in 300 sample messages from the THF corpus
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Original
Spelling

Corrected (ignoring
apostrophes)

Corrected Spelling

Total keywords
generated against BNC

3,608

1,934

1,900

Table 3: Total number of keywords generated




Corrected Spelling Original Spelling
Spelling Rank in List Spelling Rank in List
Transsexual 952 Transexual 1038
Achy 1492 Achey 3415
Tonsillitis 1498 Tonsilitis 3389
Bingeing 1623 Binging 2466
Syphilis 1658 Syphillis 1673
Dizziness 1609 Dizzyness 2885
Oestrogen 1731 Estrogen 2048
Tetanus 1778 Tetnus 2523
Disease 1850 Disese/Diseas 2885/3415
Lymph 1898 Lymphnodes 2523

Table 1: Medical terms from the keyword List based on the corrected corpus and their

equivalents in the original corpus
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Corrected Spelling Original Spelling
Spelling Rank in List Spelling Rank in List
Deodorant 788 Deodrant/Deoderant/Deodorant | 1313/1784/3526
Accidentally 903 Accidently/Accidentaly 887/2885
Regularly 980 Regulary/Regulaly 672/2885
Noticeable 991 Noticable/Noticible 795/2279

Table 2: Words that in the top 1,000 keywords from the corrected corpus and their
equivalents in the original corpus




Spelling variant Frequency G2 Rank

Embarrased 125 947.95 368
Embarassed 108 801.61 413
Embaressed 63 483.62 578
Embarresed 60 460.59 589
Embrassed 21 161.21 1,104
Embarrassed 125 156.97 1,134
Embarased 14 107.47 1,416
Embarrsed 11 84.44 1,673
Embaresed 9 69.09 1,907
Embarrised 9 69.09 1,907
Embarested 5 38.38 2,885
Embarised 5 38.38 2,885
Embarresd 5 38.38 2,885
Embarsed 5 38.38 2,885
Imbarrased 5 38.38 2,885

Table 3: Variant spellings of embarrassed in the corpus
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Figure 1: correlation graph for fully corrected spelling against original spelling
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Figure 2: correlation graph for corrected spelling ignoring missing apostrophes against

original spelling
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Fully Corrected Spelling against

Corrected Spelling Ignoring

Original Spelling Apostrophes against Original
Spelling
Kendall’s Tau 0.961 0.963
Spearman’s r 0.989 0.991
Spearman’s r 293 315

converted to t-value

Table 4: Results from Spearman’s rank correlation coefficient and its conversion to t-

value




