658 research outputs found
Role of many-body entanglement in decoherence processes
A pure state decoheres into a mixed state as it entangles with an
environment. When an entangled two-mode system is embedded in a thermal
environment, however, each mode may not be entangled with its environment by
their simple linear interaction. We consider an exactly solvable model to study
the dynamics of a total system, which is composed of an entangled two-mode
system and a thermal environment, and also an array of infinite beam splitters.
It is shown that many-body entanglement of the system and the environment plays
a crucial role in the process of disentangling the system.Comment: 4 pages, 1 figur
Simulated-tempering approach to spin-glass simulations
After developing an appropriate iteration procedure for the determination of
the parameters, the method of simulated tempering has been successfully applied
to the 2D Ising spin glass. The reduction of the slowing down is comparable to
that of the multicanonical algorithm. Simulated tempering has, however, the
advantages to allow full vectorization of the programs and to provide the
canonical ensemble directly.Comment: 12 pages (LaTeX), 4 postscript figures, uufiles encoded, submitted to
Physical Review
Global-fidelity limits of state-dependent cloning of mixed states
By relevant modifications, the known global-fidelity limits of
state-dependent cloning are extended to mixed quantum states. We assume that
the ancilla contains some a priori information about the input state. As it is
shown, the obtained results contribute to the stronger no-cloning theorem. An
attainability of presented limits is discussed.Comment: 8 pages, ReVTeX, 1 figure. In revised form an attainability of
presented limits is discussed. Detected errors are corrected. Elucidative
figure is added. Minor grammatical changes are made. More explanation
Static spectroscopy of a dense superfluid
Dense Bose superfluids, as HeII, differ from dilute ones by the existence of
a roton minimum in their excitation spectrum. It is known that this roton
minimum is qualitatively responsible for density oscillations close to any
singularity, such as vortex cores, or close to solid boundaries. We show that
the period of these oscillations, and their exponential decrease with the
distance to the singularity, are fully determined by the position and the width
of the roton minimum. Only an overall amplitude factor and a phase shift are
shown to depend on the details of the interaction potential. Reciprocally, it
allows for determining the characteristics of this roton minimum from static
"observations" of a disturbed ground state, in cases where the dynamics is not
easily accessible. We focus on the vortex example. Our analysis further shows
why the energy of these oscillations is negligible compared to the kinetic
energy, which limits their influence on the vortex dynamics, except for high
curvatures.Comment: 14 pages, 4 figures, extended version, published in J. Low Temp. Phy
Biochar-plant interaction and detoxification strategies under abiotic stresses for achieving agricultural sustainability: A critical review
The unpredictable climatic perturbations, the expanding industrial and mining sectors, excessive agrochemicals, greater reliance on wastewater usage in cultivation, and landfill leachates, are collectively causing land degradation and affecting cultivation, thereby reducing food production globally. Biochar can generally mitigate the unfavourable effects brought about by climatic perturbations (drought, waterlogging) and degraded soils to sustain crop production. It can also reduce the bioavailability and phytotoxicity of pollutants in contaminated soils via the immobilization of inorganic and/or organic contaminants, commonly through surface complexation, electrostatic attraction, ion exchange, adsorption, and co-precipitation. When biochar is applied to soil, it typically neutralizes soil acidity, enhances cation exchange capacity, water holding capacity, soil aeration, and microbial activity. Thus, biochar has been was widely used as an amendment to ameliorate crop abiotic/biotic stress. This review discusses the effects of biochar addition under certain unfavourable conditions (salinity, drought, flooding and heavy metal stress) to improve plant resilience undergoing these perturbations. Biochar applied with other stimulants like compost, humic acid, phytohormones, microbes and nanoparticles could be synergistic in some situation to enhance plant resilience and survivorship in especially saline, waterlogged and arid conditions. Overall, biochar can provide an effective and low-cost solution, especially in nutrient-poor and highly degraded soils to sustain plant cultivation
General impossible operations in quantum information
We prove a general limitation in quantum information that unifies the
impossibility principles such as no-cloning and no-anticloning. Further, we
show that for an unknown qubit one cannot design a universal Hadamard gate for
creating equal superposition of the original and its complement state.
Surprisingly, we find that Hadamard transformations exist for an unknown qubit
chosen either from the polar or equatorial great circles. Also, we show that
for an unknown qubit one cannot design a universal unitary gate for creating
unequal superpositions of the original and its complement state. We discuss why
it is impossible to design a controlled-NOT gate for two unknown qubits and
discuss the implications of these limitations.Comment: 15 pages, no figures, Discussion about personal quantum computer
remove
Entanglement Dynamics in Two-Qubit Open System Interacting with a Squeezed Thermal Bath via Quantum Nondemolition interaction
We analyze the dynamics of entanglement in a two-qubit system interacting
with an initially squeezed thermal environment via a quantum nondemolition
system-reservoir interaction, with the system and reservoir assumed to be
initially separable. We compare and contrast the decoherence of the two-qubit
system in the case where the qubits are mutually close-by (`collective regime')
or distant (`localized regime') with respect to the spatial variation of the
environment. Sudden death of entanglement (as quantified by concurrence) is
shown to occur in the localized case rather than in the collective case, where
entanglement tends to `ring down'. A consequence of the QND character of the
interaction is that the time-evolved fidelity of a Bell state never falls below
, a fact that is useful for quantum communication applications like
a quantum repeater. Using a novel quantification of mixed state entanglement,
we show that there are noise regimes where even though entanglement vanishes,
the state is still available for applications like NMR quantum computation,
because of the presence of a pseudo-pure component.Comment: 17 pages, 9 figures, REVTeX
Soliton back-action evading measurement using spectral filtering
We report on a back-action evading (BAE) measurement of the photon number of
fiber optical solitons operating in the quantum regime. We employ a novel
detection scheme based on spectral filtering of colliding optical solitons. The
measurements of the BAE criteria demonstrate significant quantum state
preparation and transfer of the input signal to the signal and probe outputs
exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of
the experiment.Comment: 5 pages, 5 figure
Quantum Characterization of a Werner-like Mixture
We introduce a Werner-like mixture [R. F. Werner, Phys. Rev. A {\bf 40}, 4277
(1989)] by considering two correlated but different degrees of freedom, one
with discrete variables and the other with continuous variables. We evaluate
the mixedness of this state, and its degree of entanglement establishing its
usefulness for quantum information processing like quantum teleportation. Then,
we provide its tomographic characterization. Finally, we show how such a
mixture can be generated and measured in a trapped system like one electron in
a Penning trap.Comment: 8 pages ReVTeX, 8 eps figure
Chaos in a double driven dissipative nonlinear oscillator
We propose an anharmonic oscillator driven by two periodic forces of
different frequencies as a new time-dependent model for investigating quantum
dissipative chaos. Our analysis is done in the frame of statistical ensemble of
quantum trajectories in quantum state diffusion approach. Quantum dynamical
manifestation of chaotic behavior, including the emergence of chaos, properties
of strange attractors, and quantum entanglement are studied by numerical
simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure
- …