646 research outputs found

    Towards quantitative in situ hybridization

    Get PDF
    In situ hybridization analysis of tissue mRNA concentrations remains to be accepted as a quantitative technique, even though exposure of tissue sections to photographic emulsion is equivalent to Northern blot analysis. Because of the biological importance of in situ quantification of RNA sequences within a morphological context, we evaluated the quantitative aspects of this technique. In calibrated microscopic samples, autoradiographic signal (density of silver grains) was proportionate to the radioactivity present, to the exposure time, and to time of development of the photographic emulsion. Similar results were obtained with tissue sections, showing that all steps of the in situ hybridization protocol, before and including the detection of the signal, can be reproducibly performed. Furthermore, the integrated density of silver grains produced in liver and intestinal sections by the in situ hybridization procedure using 35S-labeled riboprobes is directly proportionate to the signal obtained by quantitative Northern blot analysis. The significance of this finding is that in situ quantification of RNA can be realized with high sensitivity and with the additional advantage of the possibility of localizing mRNA within the cells of interest. Application of this procedure on fetal and adult intestinal tissue showed that the carbamoylphosphate synthetase (CPS)-expressing epithelial cells of both tissues accumulated CPS mRNA to the same level but that whole-organ CPS mRNA levels decreased four-to fivefold in the same period, owing to a comparable decrease in the number of CPS-expressing cells in total intestinal tissu

    Anomalous Power Law Distribution of Total Lifetimes of Branching Processes Relevant to Earthquakes

    Get PDF
    We consider a branching model of triggered seismicity, the ETAS (epidemic-type aftershock sequence) model which assumes that each earthquake can trigger other earthquakes (``aftershocks''). An aftershock sequence results in this model from the cascade of aftershocks of each past earthquake. Due to the large fluctuations of the number of aftershocks triggered directly by any earthquake (``productivity'' or ``fertility''), there is a large variability of the total number of aftershocks from one sequence to another, for the same mainshock magnitude. We study the regime where the distribution of fertilities μ\mu is characterized by a power law 1/μ1+γ\sim 1/\mu^{1+\gamma} and the bare Omori law for the memory of previous triggering mothers decays slowly as 1/t1+θ\sim 1/t^{1+\theta}, with 0<θ<10 < \theta <1 relevant for earthquakes. Using the tool of generating probability functions and a quasistatic approximation which is shown to be exact asymptotically for large durations, we show that the density distribution of total aftershock lifetimes scales as 1/t1+θ/γ\sim 1/t^{1+\theta/\gamma} when the average branching ratio is critical (n=1n=1). The coefficient 1<γ=b/α<21<\gamma = b/\alpha<2 quantifies the interplay between the exponent b1b \approx 1 of the Gutenberg-Richter magnitude distribution 10bm \sim 10^{-bm} and the increase 10αm\sim 10^{\alpha m} of the number of aftershocks with the mainshock magnitude mm (productivity) with α0.8\alpha \approx 0.8. More generally, our results apply to any stochastic branching process with a power-law distribution of offsprings per mother and a long memory.Comment: 16 pages + 4 figure

    Ex vivo adenoviral vector-mediated neurotrophin gene transfer to olfactory ensheathing glia: Effects on rubrospinal tract regeneration, lesion size, and functional recovery after implantation in the injured rat spinal cord

    Get PDF
    The present study uniquely combines olfactory ensheathing glia (OEG) implantation with ex vivo adenoviral (AdV) vector-based neurotrophin gene therapy in an attempt to enhance regeneration after cervical spinal cord injury. Primary OEG were transduced with AdV vectors encoding rat brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), or bacterial marker protein -galactosidase (LacZ) and subsequently implanted into adult Fischer rats directly after unilateral transection of the dorsolateral funiculus. Implanted animals received a total of 2 x 105 OEG that were subjected to transduction with neurotrophin-encoding AdV vector, AdV-LacZ, or no vector, respectively. At 4 months after injury, lesion volumes were smaller in all OEG implanted rats and significantly reduced in size after implantation of neurotrophin-encoding AdV vector-transduced OEG. All OEG grafts were filled with neurofilament-positive axons, and AdV vector-mediated expression of BDNF by implanted cells significantly enhanced regenerative sprouting of the rubrospinal tract. Behavioral analysis revealed that OEG-implanted rats displayed better locomotion during horizontal rope walking than unimplanted lesioned controls. Recovery of hind limb function was also improved after implantation of OEG that were transduced with a BDNF- or NT-3-encoding AdV vector. Hind limb performance during horizontal rope locomotion did directly correlate with lesion size, suggesting that neuroprotective effects of OEG implants contributed to the level of functional recovery. Thus, our results demonstrate that genetic engineering of OEG not only resulted in a cell that was more effective in promoting axonal outgrowth but could also lead to enhanced recovery after injury, possibly by sparing of spinal tissue

    Depression and treatment with anti-calcitonin gene related peptide (CGRP) (ligand or receptor) antibodies for migraine

    Get PDF
    Background and purpose: The aim was to evaluate the effect of anti-calcitonin gene related peptide (CGRP) (ligand or receptor) antibodies on depressive symptoms in subjects with migraine and to determine whether depressive symptoms predict treatment response. Methods: Patients with migraine treated with erenumab and fremanezumab at the Leiden Headache Centre completed daily E-headache diaries. A control group was included. Depressive symptoms were assessed using the Hospital Anxiety and Depression Scale (HADS) and the Center for Epidemiological Studies Depression Scale (CES-D) questionnaires at baseline (T0) and after 3 months (T1). First, the effect of treatment on the reduction in HADS-D and CES-D scores was assessed, with reduction in depression scores as the dependent variable and reduction in monthly migraine days (MMD) and treatment with anti-CGRP medication as independent variables. Second, depression as a predictor of treatment response was investigated, using the absolute reduction in MMD as a dependent variable and age, gender, MMD, active depression, impact, stress and locus of control scores as independent variables. Results: In total, n = 108 patients were treated with erenumab, n = 90 with fremanezumab and n = 68 were without active treatment. Treatment with anti-CGRP medication was positively associated with a reduction in the HADS-D (β = 1.65, p = 0.01) compared to control, independent of MMD reduction. However, the same effect was not found for the CES-D (β = 2.15, p = 0.21). Active depression predicted poorer response to erenumab (p = 0.02) but not to fremanezumab (p = 0.09). Conclusion: Anti-CGRP (ligand or receptor) monoclonals lead to improvement of depressive symptoms in individuals with migraine, independent of migraine reduction. Depression may predict treatment response to erenumab but not to fremanezumab.</p

    Effect of Hyperglycemia on Gene Expression during Early Organogenesis in Mice

    Get PDF
    BACKGROUND: Cardiovascular and neural malformations are common sequels of diabetic pregnancies, but the underlying molecular mechanisms remain unknown. We hypothesized that maternal hyperglycemia would affect the embryos most shortly after the glucose-sensitive time window at embryonic day (ED) 7.5 in mice. METHODS: Mice were made diabetic with streptozotocin, treated with slow-release insulin implants and mated. Pregnancy aggravated hyperglycemia. Gene expression profiles were determined in ED8.5 and ED9.5 embryos from diabetic and control mice using Serial Analysis of Gene Expression and deep sequencing. RESULTS: Maternal hyperglycemia induced differential regulation of 1,024 and 2,148 unique functional genes on ED8.5 and ED9.5, respectively, mostly in downward direction. Pathway analysis showed that ED8.5 embryos suffered mainly from impaired cell proliferation, and ED9.5 embryos from impaired cytoskeletal remodeling and oxidative phosphorylation (all P ≤ E-5). A query of the Mouse Genome Database showed that 20-25% of the differentially expressed genes were caused by cardiovascular and/or neural malformations, if deficient. Despite high glucose levels in embryos with maternal hyperglycemia and a ~150-fold higher rate of ATP production from glycolysis than from oxidative phosphorylation on ED9.5, ATP production from both glycolysis and oxidative phosphorylation was reduced to ~70% of controls, implying a shortage of energy production in hyperglycemic embryos. CONCLUSION: Maternal hyperglycemia suppressed cell proliferation during gastrulation and cytoskeletal remodeling during early organogenesis. 20-25% of the genes that were differentially regulated by hyperglycemia were associated with relevant congenital malformations. Unexpectedly, maternal hyperglycemia also endangered the energy supply of the embryo by suppressing its glycolytic capacity

    Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback

    Get PDF
    Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat) with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota
    corecore