721 research outputs found

    Relativistic Kinetics of Phonon Gas in Superfluids

    Get PDF
    The relativistic kinetic theory of the phonon gas in superfluids is developed. The technique of the derivation of macroscopic balance equations from microscopic equations of motion for individual particles is applied to an ensemble of quasi-particles. The necessary expressions are constructed in terms of a Hamilton function of a (quasi-)particle. A phonon contribution into superfluid dynamic parameters is obtained from energy-momentum balance equations for the phonon gas together with the conservation law for superfluids as a whole. Relations between dynamic flows being in agreement with results of relativistic hydrodynamic consideration are found. Based on the kinetic approach a problem of relativistic variation of the speed of sound under phonon influence at low temperature is solved.Comment: 23 pages, Revtex fil

    Crystallization of a classical two-dimensional electron system: Positional and orientational orders

    Full text link
    Crystallization of a classical two-dimensional one-component plasma (electrons interacting with the Coulomb repulsion in a uniform neutralizing positive background) is investigated with a molecular dynamics simulation. The positional and the orientational correlation functions are calculated for the first time. We have found an indication that the solid phase has a quasi-long-range (power-law) positional order along with a long-range orientational order. This indicates that, although the long-range Coulomb interaction is outside the scope of Mermin's theorem, the absence of ordinary crystalline order at finite temperatures applies to the electron system as well. The `hexatic' phase, which is predicted between the liquid and the solid phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne

    Analyticity of The Ground State Energy For Massless Nelson Models

    Full text link
    We show that the ground state energy of the translationally invariant Nelson model, describing a particle coupled to a relativistic field of massless bosons, is an analytic function of the coupling constant and the total momentum. We derive an explicit expression for the ground state energy which is used to determine the effective mass.Comment: 33 pages, 1 figure, added a section on the calculation of the effective mas

    Infrared problem for the Nelson model on static space-times

    Full text link
    We consider the Nelson model with variable coefficients and investigate the problem of existence of a ground state and the removal of the ultraviolet cutoff. Nelson models with variable coefficients arise when one replaces in the usual Nelson model the flat Minkowski metric by a static metric, allowing also the boson mass to depend on position. A physical example is obtained by quantizing the Klein-Gordon equation on a static space-time coupled with a non-relativistic particle. We investigate the existence of a ground state of the Hamiltonian in the presence of the infrared problem, i.e. assuming that the boson mass tends to 0 at infinity

    On the Global Existence of Bohmian Mechanics

    Get PDF
    We show that the particle motion in Bohmian mechanics, given by the solution of an ordinary differential equation, exists globally: For a large class of potentials the singularities of the velocity field and infinity will not be reached in finite time for typical initial values. A substantial part of the analysis is based on the probabilistic significance of the quantum flux. We elucidate the connection between the conditions necessary for global existence and the self-adjointness of the Schr\"odinger Hamiltonian.Comment: 35 pages, LaTe

    Thermodynamic Gravity and the Schrodinger Equation

    Full text link
    We adopt a 'thermodynamical' formulation of Mach's principle that the rest mass of a particle in the Universe is a measure of its long-range collective interactions with all other particles inside the horizon. We consider all particles in the Universe as a 'gravitationally entangled' statistical ensemble and apply the approach of classical statistical mechanics to it. It is shown that both the Schrodinger equation and the Planck constant can be derived within this Machian model of the universe. The appearance of probabilities, complex wave functions, and quantization conditions is related to the discreetness and finiteness of the Machian ensemble.Comment: Minor corrections, the version accepted by Int. J. Theor. Phy

    Critical Dynamics of Magnets

    Get PDF
    We review our current understanding of the critical dynamics of magnets above and below the transition temperature with focus on the effects due to the dipole--dipole interaction present in all real magnets. Significant progress in our understanding of real ferromagnets in the vicinity of the critical point has been made in the last decade through improved experimental techniques and theoretical advances in taking into account realistic spin-spin interactions. We start our review with a discussion of the theoretical results for the critical dynamics based on recent renormalization group, mode coupling and spin wave theories. A detailed comparison is made of the theory with experimental results obtained by different measuring techniques, such as neutron scattering, hyperfine interaction, muon--spin--resonance, electron--spin--resonance, and magnetic relaxation, in various materials. Furthermore we discuss the effects of dipolar interaction on the critical dynamics of three--dimensional isotropic antiferromagnets and uniaxial ferromagnets. Special attention is also paid to a discussion of the consequences of dipolar anisotropies on the existence of magnetic order and the spin--wave spectrum in two--dimensional ferromagnets and antiferromagnets. We close our review with a formulation of critical dynamics in terms of nonlinear Langevin equations.Comment: Review article (154 pages, figures included

    Renormalization approach for quantum-dot structures under strong alternating fields

    Full text link
    We develop a renormalization method for calculating the electronic structure of single and double quantum dots under intense ac fields. The nanostructures are emulated by lattice models with a clear continuum limit of the effective-mass and single-particle approximations. The coupling to the ac field is treated non-perturbatively by means of the Floquet Hamiltonian. The renormalization approach allows the study of dressed states of the nanoscopic system with realistic geometries as well arbitrary strong ac fields. We give examples of a single quantum dot, emphasizing the analysis of the effective-mass limit for lattice models, and double-dot structures, where we discuss the limit of the well used two-level approximation.Comment: 6 pages, 7 figure

    Quantum mechanics: Myths and facts

    Get PDF
    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.Comment: 51 pages, pedagogic review, revised, new references, to appear in Found. Phy
    • …
    corecore