775 research outputs found

    Proteorhodopsin overproduction enhances the long-term viability of Escherichia coli

    Get PDF
    Genes encoding the photoreactive protein proteorhodopsin (PR) have been found in a wide range of marine bacterial species, reflecting the significant contribution that PR makes to energy flux and carbon cycling in ocean ecosystems. PR can also confer advantages to enhance the ability of marine bacteria to survive periods of starvation. Here, we investigate the effect of heterologously produced PR on the viability of Escherichia coli. Quantitative mass spectrometry shows that E. coli, exogenously supplied with the retinal cofactor, assembles as many as 187,000 holo-PR molecules per cell, accounting for approximately 47% of the membrane area; even cells with no retinal synthesize ∼148,000 apo-PR molecules per cell. We show that populations of E. coli cells containing PR exhibit significantly extended viability over many weeks, and we use single-cell Raman spectroscopy (SCRS) to detect holo-PR in 9-month-old cells. SCRS shows that such cells, even incubated in the dark and therefore with inactive PR, maintain cellular levels of DNA and RNA and avoid deterioration of the cytoplasmic membrane, a likely basis for extended viability. The substantial proportion of the E. coli membrane required to accommodate high levels of PR likely fosters extensive intermolecular contacts, suggested to physically stabilize the cell membrane and impart a long-term benefit manifested as extended viability in the dark. We propose that marine bacteria could benefit similarly from a high PR content, with a stabilized cell membrane extending survival when those bacteria experience periods of severe nutrient or light limitation in the oceans

    CP Violation from Dimensional Reduction: Examples in 4+1 Dimensions

    Get PDF
    We provide simple examples of the generation of complex mass terms and hence CP violation through dimensional reduction.Comment: 6 pages, typos corrected, 1 reference adde

    Economics of preceding crops and nitrogen application rates for canola and barley production in western Canada

    Get PDF
    Non-Peer ReviewedThe objective of this study was to evaluate the economic effects of a range of legume and non-legume preceding crops and N rates on costs and net revenue (NR) of canola (Brassica napus L.), barley (Hordeum vulgare L.) and canola-barley rotation under various environmental conditions. Legumes such as field pea (Pisum sativum L.) and lentil (Lens culinaris Medik.) as preceding crop generated higher net revenues for the following crops canola and barley than when wheat (Triticum aestivum L.) and canola were the preceding crops. Although faba bean (Vicia faba L.) grown as a green manure produced the highest annual net revenues for the following crops canola and barley, this contribution was not enough to compensate for the loss of income during the green manure production year. Therefore, growing faba bean as a green manure was not economical. Response of net revenue to N rates was mainly linear or quadratic, and N was optimal at 60 to 90 kg ha-1 at most sites. The results indicate that growing legumes for seed prior to canola can increase net revenues of canola and subsequent barley

    Disordered Bosons: Condensate and Excitations

    Full text link
    The disordered Bose Hubbard model is studied numerically within the Bogoliubov approximation. First, the spatially varying condensate wavefunction in the presence of disorder is found by solving a nonlinear Schrodinger equation. Using the Bogoliubov approximation to find the excitations above this condensate, we calculate the condensate fraction, superfluid density, and density of states for a two-dimensional disordered system. These results are compared with experiments done with 4He{}^4{\rm He} adsorbed in porous media.Comment: RevTeX, 26 pages and 10 postscript figures appended (Figure 9 has three separate plots, so 12 postcript files altogether

    Thermopower and thermal conductivity of superconducting perovskite MgCNi3MgCNi_3

    Full text link
    The thermopower and thermal conductivity of superconducting perovskite MgCNi3MgCNi_3 (Tc≈T_c \approx 8 K) have been studied. The thermopower is negative from room temperature to 10 K. Combining with the negative Hall coefficient reported previously, the negative thermopower definetly indicates that the carrier in MgCNi3MgCNi_3 is electron-type. The nonlinear temperature dependence of thermopower below 150 K is explained by the electron-phonon interaction renormalization effects. The thermal conductivity is of the order for intermetallics, larger than that of borocarbides and smaller than MgB2MgB_2. In the normal state, the electronic contribution to the total thermal conductivity is slightly larger than the lattice contribution. The transverse magnetoresistance of MgCNi3MgCNi_3 is also measured. It is found that the classical Kohler's rule is valid above 50 K. An electronic crossover occures at T∗∼50KT^* \sim 50 K, resulting in the abnormal behavior of resistivity, thermopower, and magnetoresistance below 50 K.Comment: Revised on 12 September 2001, Phys. Rev. B in pres

    Exchange coupling in CaMnO3_3 and LaMnO3_3: configuration interaction and the coupling mechanism

    Full text link
    The equilibrium structure and exchange constants of CaMnO3_3 and LaMnO3_3 have been investigated using total energy unrestricted Hartree-Fock (UHF) and localised orbital configuration interaction (CI) calculations on the bulk compounds and Mn2_2O1114−_{11}^{14-} and Mn2_2O1116−_{11}^{16-} clusters. The predicted structure and exchange constants for CaMnO3_3 are in reasonable agreement with estimates based on its N\'eel temperature. A series of calculations on LaMnO3_3 in the cubic perovskite structure shows that a Hamiltonian with independent orbital ordering and exchange terms accounts for the total energies of cubic LaMnO3_3 with various spin and orbital orderings. Computed exchange constants depend on orbital ordering. UHF calculations tend to underestimate exchange constants in LaMnO3_3, but have the correct sign when compared with values obtained by neutron scattering; exchange constants obtained from CI calculations are in good agreement with neutron scattering data provided the Madelung potential of the cluster is appropriate. Cluster CI calculations reveal a strong dependence of exchange constants on Mn d eg_g orbital populations in both compounds. CI wave functions are analysed in order to determine which exchange processes are important in exchange coupling in CaMnO3_3 and LaMnO3_3.Comment: 25 pages and 9 postscript figure

    Engineering a rhodopsin-based photo-electrosynthetic system in bacteria for CO2 fixation

    Get PDF
    A key goal of synthetic biology is to engineer organisms that can use solar energy to convert CO2 to biomass, chemicals, and fuels. We engineered a light-dependent electron transfer chain by integrating rhodopsin and an electron donor to form a closed redox loop, which drives rhodopsin-dependent CO2 fixation. A light-driven proton pump comprising Gloeobacter rhodopsin (GR) and its cofactor retinal have been assembled in Ralstonia eutropha (Cupriavidus necator) H16. In the presence of light, this strain fixed inorganic carbon (or bicarbonate) leading to 20% growth enhancement, when formate was used as an electron donor. We found that an electrode from a solar panel can replace organic compounds to serve as the electron donor, mediated by the electron shuttle molecule riboflavin. In this new autotrophic and photo-electrosynthetic system, GR is augmented by an external photocell for reductive CO2 fixation. We demonstrated that this hybrid photo-electrosynthetic pathway can drive the engineered R. eutropha strain to grow using CO2 as the sole carbon source. In this system, a bioreactor with only two inputs, light and CO2, enables the R. eutropha strain to perform a rhodopsin-dependent autotrophic growth. Light energy alone, supplied by a solar panel, can drive the conversion of CO2 into biomass with a maximum electron transfer efficiency of 20%

    Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology

    Get PDF
    A type of chromosome-free cell called SimCells (simple cells) has been generated from Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. The removal of the native chromosomes of these bacteria was achieved by double-stranded breaks made by heterologous I-CeuI endonuclease and the degradation activity of endogenous nucleases. We have shown that the cellular machinery remained functional in these chromosome-free SimCells and was able to process various genetic circuits. This includes the glycolysis pathway (composed of 10 genes) and inducible genetic circuits. It was found that the glycolysis pathway significantly extended longevity of SimCells due to its ability to regenerate ATP and NADH/NADPH. The SimCells were able to continuously express synthetic genetic circuits for 10 d after chromosome removal. As a proof of principle, we demonstrated that SimCells can be used as a safe agent (as they cannot replicate) for bacterial therapy. SimCells were used to synthesize catechol (a potent anticancer drug) from salicylic acid to inhibit lung, brain, and soft-tissue cancer cells. SimCells represent a simplified synthetic biology chassis that can be programmed to manufacture and deliver products safely without interference from the host genome

    The Isgur-Wise function in a relativistic model for qQˉq\bar Q system

    Full text link
    We use the Dirac equation with a ``(asymptotically free) Coulomb + (Lorentz scalar) linear '' potential to estimate the light quark wavefunction for qQˉ q\bar Q mesons in the limit mQ→∞m_Q\to \infty. We use these wavefunctions to calculate the Isgur-Wise function ξ(v.v′)\xi (v.v^\prime ) for orbital and radial ground states in the phenomenologically interesting range 1≤v.v′≤41\leq v.v^ \prime \leq 4. We find a simple expression for the zero-recoil slope, ξ′(1)=−1/2−ϵ2/3\xi^ \prime (1) =-1/2- \epsilon^2 /3, where ϵ\epsilon is the energy eigenvalue of the light quark, which can be identified with the Λˉ\bar\Lambda parameter of the Heavy Quark Effective Theory. This result implies an upper bound of −1/2-1/2 for the slope ξ′(1)\xi^\prime (1). Also, because for a very light quark q(q=u,d)q (q=u, d) the size \sqrt {} of the meson is determined mainly by the ``confining'' term in the potential (γ∘σr)(\gamma_\circ \sigma r), the shape of ξu,d(v.v′)\xi_{u,d}(v.v^\prime ) is seen to be mostly sensitive to the dimensionless ratio Λˉu,d2/σ\bar \Lambda_{u,d}^2/\sigma. We present results for the ranges of parameters 150MeV<Λˉu,d<600MeV150 MeV <\bar \Lambda_{u,d} <600 MeV (Λˉs≈Λˉu,d+100MeV)(\bar\Lambda_s \approx \bar\Lambda_{u,d}+100 MeV), 0.14GeV2≤σ≤0.25GeV20.14 {GeV}^2 \leq \sigma \leq 0.25 {GeV}^2 and light quark masses mu,md≈0,ms=175MeVm_u, m_d \approx 0, m_s=175 MeV and compare to existing experimental data and other theoretical estimates. Fits to the data give: Λˉu,d2/σ=4.8±1.7{\bar\Lambda_{u,d}}^2/\sigma =4.8\pm 1.7 , −ξu,d′(1)=2.4±0.7-\xi^\prime_{u,d}(1)=2.4\pm 0.7 and ∣Vcb∣τB1.48ps=0.050±0.008\vert V_{cb} \vert \sqrt {\frac {\tau_B}{1.48 ps}}=0.050\pm 0.008 [ARGUS '93]; Λˉu,d2/σ=3.4±1.8{\bar\Lambda_{u,d}}^2/\sigma = 3.4\pm 1.8, −ξu,d′(1)=1.8±0.7-\xi^\prime_{u,d}(1)=1.8\pm 0.7 and ∣Vcb∣τB1.48ps=0.043±0.008\vert V_{cb} \vert \sqrt { \frac {\tau_B}{1.48 ps}}=0.043\pm 0.008 [CLEO '93]; ${\bar\Lambda_{u,d}}^2/Comment: 22 pages, Latex, 4 figures (not included) available by fax or via email upon reques
    • …
    corecore