18 research outputs found

    Comment on "Evolution of a Quasi-Stationary State"

    Get PDF
    Approximately forty years ago it was realized that the time development of decaying systems might not be precisely exponential. Rolf Winter (Phys. Rev. {\bf 123}, 1503 (1961)) analyzed the simplest nontrivial system - a particle tunneling out of a well formed by a wall and a delta-function. He calculated the probability current just outside the well and found irregular oscillations on a short time scale followed by an exponential decrease followed by more oscillations and finally by a decrease as a power of the time. We have reanalyzed this system, concentrating on the survival probability of the particle in the well rather than the probability current, and find a different short time behavior.Comment: 8 pages, 6 figures, RevTex

    Decay process accelerated by tunneling in its very early stage

    Get PDF
    We examine a fast decay process that arises in the transition period between the Gaussian and exponential decay processes in quantum decay systems. It is usually expected that the decay is decelerated by a confinement potential barrier. However, we find a case where the decay in the transition period is accelerated by tunneling through a confinement potential barrier. We show that the acceleration gives rise to an appreciable effect on the time evolution of the nonescape probability of the decay system.Comment: 4 pages, 6 figures; accepted for publication in Phys. Rev.

    Projection Postulate and Atomic Quantum Zeno Effect

    Get PDF
    The projection postulate has been used to predict a slow-down of the time evolution of the state of a system under rapidly repeated measurements, and ultimately a freezing of the state. To test this so-called quantum Zeno effect an experiment was performed by Itano et al. (Phys. Rev. A 41, 2295 (1990)) in which an atomic-level measurement was realized by means of a short laser pulse. The relevance of the results has given rise to controversies in the literature. In particular the projection postulate and its applicability in this experiment have been cast into doubt. In this paper we show analytically that for a wide range of parameters such a short laser pulse acts as an effective level measurement to which the usual projection postulate applies with high accuracy. The corrections to the ideal reductions and their accumulation over n pulses are calculated. Our conclusion is that the projection postulate is an excellent pragmatic tool for a quick and simple understanding of the slow-down of time evolution in experiments of this type. However, corrections have to be included, and an actual freezing does not seem possible because of the finite duration of measurements.Comment: 25 pages, LaTeX, no figures; to appear in Phys. Rev.

    Lattice animal specific heats and the collapse of branched polymers

    No full text
    The specific heat of one lattice animal is computed using a new Monte Carlo approach. The specific heat exhibits a peak near the collapse transition temperature derived by Derrida and Herrmann. There is also a secondary, low temperature peak which appears to be associated with a roughening transition.En utilisant une nouvelle forme de la méthode Monte Carlo, nous calculons la chaleur spécifique d'un animal sur réseau. La chaleur spécifique présente un maximum au voisinage de la température d'effondrement obtenue par Derrida et Herrmann. Elle a aussi un maximum secondaire à basse temperature, liée, apparemment, à une transition rugueuse
    corecore