31 research outputs found

    Financial diversification before modern portfolio theory: UK financial advice documents in the late nineteenth and the beginning of the twentieth century

    Get PDF
    The paper offers textual evidence from a series of financial advice documents in the late nineteenth century and the early twentieth century of how UK investors perceived of and managed risk. In the world’s largest financial centre of the time, UK investors were familiar with the concept of correlation and financial advisers’ suggestions were consistent with the recommendations of modern portfolio theory in relation to portfolio selection strategies. From the 1870s, there was an increased awareness of the benefits of financial diversification - primarily putting equal amounts into a number of different securities - with much of the emphasis being on geographical rather than sectoral diversification and some discussion of avoiding highly correlated investments. Investors in the past were not so naïve as mainstream financial discussions suggest today

    New Solution of D=11 Supergravity on S^7 from D=4

    Full text link
    A new static partially twisted solution of N=4, SO(4) gauged supergravity in D=11 is obtained in this work using Cveti\^c et al embedding of four dimensional into eleven dimensional supergravities. In four dimensions we get two solutions: an asymptotic one corresponding to AdS4AdS_4 and a near horizon fixed point solution of the form AdS2Ă—H2AdS_2\times H_2. Hence, while the former solution has 32 supercharges the latter turns out to have only 4 conserved. Moreover, we managed to find an exact interpolating solution, thus connecting the above two. Aiming at a future study of AdS/CFTAdS/CFT duality for the theory at hand we derived the Penrose limit of the four dimensional solutions. Interestingly the pp-wave limit of the near horizon solution suggests itself as being of the supernumerary supersymmetric type. In D=11 we exhibit the uplift of the four dimensional solutions: one associated to AdS4Ă—S7AdS_4\times S^7 and the other to a foliation of AdS2Ă—H2Ă—S7AdS_2\times H_2 \times S^7, as well as their pp-wave limits.Comment: 14 pages, LaTe

    Remarks on Dirac-like Monopole, Maxwell and Maxwell-Chern-Simons Electrodynamics in D=(2+1)

    Get PDF
    Classical Maxwell and Maxwell-Chern-Simons (MCS) Electrodynamics in (2+1)D are studied in some details. General expressions for the potential and fields are obtained for both models, and some particular cases are explicitly solved. Conceptual and technical difficulties arise, however, for accelerated charges. The propagation of electromagnetic signals is also studied and their reverberation is worked out and discussed. Furthermore, we show that a Dirac-like monopole yields a (static) tangential electric field. We also discuss some classical and quantum consequences of the field created by such a monopole when acting upon an usual electric charge. In particular, we show that at large distances, the dynamics of one single charged particle under the action of such a potential and a constant (external) magnetic field as well, reduces to that of one central harmonic oscillator, presenting, however, an interesting angular sector which admits energy-eigenvalues. Among other peculiarities, both sectors, the radial and the angular one, present non-vanishing energy-eigenvalues for their lowest level. Moreover, those associated to the angle are shown to respond to discrete shifts of such a variable. We also raise the question whether the formation of bound states is possible in the system.Comment: 17 pages, 2 figures. To appear in Phys. Rev.

    Sparse coding for improved signal-to-noise ratio in MRI

    Full text link
    Magnetic Resonance images (MRI) do not only exhibit sparsity but their sparsity take a certain predictable shape which is common for all kinds of images. That region based localised sparsity can be used to de-noise MR images from random thermal noise. This paper present a simple framework to exploit sparsity of MR images for image de-noising. As, noise in MR images tends to change its shape based on contrast level and signal itself, the proposed method is independent of noise shape and type and it can be used in combination with other methods
    corecore