17,610 research outputs found

    Understanding entangled spins in QED

    Full text link
    The stability of two entangled spins dressed by electrons is studied by calculating the scattering phase shifts. The interaction between electrons is interpreted by fully relativistic QED and the screening effect is described phenomenologically in the Debye exponential form eαre^{-\alpha r}. Our results show that if the (Einstein-Podolsky-Rosen-) EPR-type states are kept stable under the interaction of QED, the spatial wave function must be parity-dependent. The spin-singlet state s=0s=0 and the polarized state 12(+>+>)\frac 1{\sqrt{2}}(\mid +-> -\mid -+>) along the z-axis\QTR{bf}{\}give rise to two different kinds of phase shifts\QTR{bf}{.} Interestingly, the interaction between electrons in the spin-singlet pair is found to be attractive. Such an attraction could be very useful when we extract the entangled spins from superconductors. A mechanism to filter the entangled spins is also discussed.Comment: 6 pages, 3 figures. changes adde

    Initiation and propagation of coronal mass ejections

    Full text link
    This paper reviews recent progress in the research on the initiation and propagation of CMEs. In the initiation part, several trigger mechanisms are discussed; In the propagation part, the observations and modelings of EIT waves/dimmings, as the EUV counterparts of CMEs, are described.Comment: 8 pages, 1 figure, an invited review, to appear in J. Astrophys. Astro

    Temperature-dependent striped antiferromagnetism of LaFeAsO in a Green's function approach

    Full text link
    We use a Green's function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature TN and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for TN and determine our temperature-dependent average spin from zero temperature to TN in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature TN = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero TN, and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Green's function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.Comment: 12 page

    Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors

    Get PDF
    In the first three years since the discovery of Fe-based high Tc superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed light on three important questions. First, STM has demonstrated the complexity of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle interference (QPI) imaging and low temperature spectroscopy have shown that the pairing order parameter varies from nodal to nodeless s\pm within a single family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the electronic states of both parent and superconducting materials. As a local probe, STM is in a strong position to understand the interactions between these broken symmetry states and superconductivity. Finally, STM has been used to image the vortex state, giving insights into the technical problem of vortex pinning, and the fundamental problem of the competing states introduced when superconductivity is locally quenched by a magnetic field. Here we give a pedagogical introduction to STM and QPI imaging, discuss the specific challenges associated with extracting bulk properties from the study of surfaces, and report on progress made in understanding Fe-based superconductors using STM techniques.Comment: 36 pages, 23 figures, 229 reference

    Tunable anisotropy in inverse opals and emerging optical properties

    Get PDF
    Using self-assembly, nanoscale materials can be fabricated from the bottom up. Opals and inverse opals are examples of self-assembled nanomaterials made from crystallizing colloidal particles. As self-assembly requires a high level of control, it is challenging to use building blocks with anisotropic geometry to form complex opals, which limits the realizable structures. Typically, spherical colloids are employed as building blocks, leading to symmetric, isotropic superstructures. However, a significantly richer palette of directionally dependent properties are expected if less symmetric, anisotropic structures can be created, especially originating from the assembly of regular, spherical particles. Here we show a simple method to introduce anisotropy into inverse opals by subjecting them to a post-assembly thermal treatment that results in directional shrinkage of the silica matrix caused by condensation of partially hydrated sol-gel silica structures. In this way, we can tailor the shape of the pores, and the anisotropy of the final inverse opal preserves the order and uniformity of the self-assembled structure, while completely avoiding the need to synthesize complex oval-shaped particles and crystallize them into such target geometries. Detailed X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies clearly identify increasing degrees of sol-gel condensation in confinement as a mechanism for the structure change. A computer simulation of structure changes resulting from the condensation-induced shrinkage further confirmed this mechanism. As an example of property changes induced by the introduction of anisotropy, we characterized the optical spectra of the anisotropic inverse opals and found that the optical properties can be controlled in a precise way using calcination temperature

    Cosmic anti-friction and accelerated expansion

    Get PDF
    We explain an accelerated expansion of the present universe, suggested from observations of supernovae of type Ia at high redshift, by introducing an anti-frictional force that is self-consistently exerted on the particles of the cosmic substratum. Cosmic anti-friction, which is intimately related to ``particle production'', is shown to give rise to an effective negative pressure of the cosmic medium. While other explanations for an accelerated expansion (cosmological constant, quintessence) introduce a component of dark energy besides ``standard'' cold dark matter (CDM) we resort to a phenomenological one-component model of CDM with internal self-interactions. We demonstrate how the dynamics of the LambdaCDM model may be recovered as a special case of cosmic anti-friction. We discuss the connection with two-component models and obtain an attractor behavior for the ratio of the energy densities of both components which provides a possible phenomenological solution to the coincidence problem.Comment: 19 pages, 7 (3 new) figures, new derivation of kinetic equation with force term, accepted by Physical Review

    High energy pseudogap and its evolution with doping in Fe-based superconductors as revealed by optical spectroscopy

    Full text link
    We report optical spectroscopic measurements on electron- and hole-doped BaFe2As2. We show that the compounds in the normal state are not simple metals. The optical conductivity spectra contain, in addition to the free carrier response at low frequency, a temperature-dependent gap-like suppression at rather high energy scale near 0.6 eV. This suppression evolves with the As-Fe-As bond angle induced by electron- or hole-doping. Furthermore, the feature becomes much weaker in the Fe-chalcogenide compounds. We elaborate that the feature is caused by the strong Hund's rule coupling effect between the itinerant electrons and localized electron moment arising from the multiple Fe 3d orbitals. Our experiments demonstrate the coexistence of itinerant and localized electrons in iron-based compounds, which would then lead to a more comprehensive picture about the metallic magnetism in the materials.Comment: 6 pages, 7 figure

    A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    Full text link
    We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×\times105^5 GWth_{\rm th}-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241^{241}Am-13^{13}C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin22θ13\sin^{2}2\theta_{13} and Δmee2|\Delta m^2_{ee}| were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave sin22θ13=0.084±0.005\sin^{2}2\theta_{13} = 0.084\pm0.005 and Δmee2=(2.42±0.11)×103|\Delta m^{2}_{ee}|= (2.42\pm0.11) \times 10^{-3} eV2^2 in the three-neutrino framework.Comment: Updated to match final published versio
    corecore