16,539 research outputs found

    Low Redshift QSO Lyman alpha Absorption Line Systems Associated with Galaxies

    Full text link
    In this paper we present Monte-Carlo simulations of Lyman alpha absorption systems which originate in galactic haloes, galaxy discs and dark matter (DM) satellites around big central haloes. It is found that for strong Lyman alpha absorption lines galactic haloes and satellites can explain ~20% and 40% of the line number density of QSO absorption line key project respectively. If big galaxies indeed possess such large numbers of DM satellites and they possess gas, these satellites may play an important role for strong Lyman alpha lines. However the predicted number density of Lyman-limit systems by satellites is \~0.1 (per unit redshift), which is four times smaller than that by halo clouds. Including galactic haloes, satellites and HI discs of spirals, the predicted number density of strong lines can be as much as 60% of the HST result. The models can also predict all of the observed Lyman-limit systems. The average covering factor within 250 kpc/h is estimated to be ~0.36. And the effective absorption radius of a galaxy is estimated to be ~150 kpc/h. The models predict W_r propto rho^{-0.5} L_B^{0.15} (1+z)^{-0.5}. We study the selection effects of selection criteria similar to the imaging and spectroscopic surveys. We simulate mock observations through known QSO lines-of-sight and find that selection effects can statistically tighten the dependence of line width on projected distance. (abridged)Comment: 23 pages, 9 postscript figures; references updated, minor change in section

    Formation time distribution of dark matter haloes: theories versus N-body simulations

    Full text link
    This paper uses numerical simulations to test the formation time distribution of dark matter haloes predicted by the analytic excursion set approaches. The formation time distribution is closely linked to the conditional mass function and this test is therefore an indirect probe of this distribution. The excursion set models tested are the extended Press-Schechter (EPS) model, the ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB) model. Three sets of simulations (6 realizations) have been used to investigate the halo formation time distribution for halo masses ranging from dwarf-galaxy like haloes (M=10−3M∗M=10^{-3} M_*, where M∗M_* is the characteristic non-linear mass scale) to massive haloes of M=8.7M∗M=8.7 M_*. None of the models can match the simulation results at both high and low redshift. In particular, dark matter haloes formed generally earlier in our simulations than predicted by the EPS model. This discrepancy might help explain why semi-analytic models of galaxy formation, based on EPS merger trees, under-predict the number of high redshift galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Power Spectrum Analysis of the 2dF QSO Sample Revisited

    Full text link
    We revisit the power spectrum analysis of the complete sample of the two degree field (2dF) QSO redshift (2QZ) survey, as a complementary test of the work by Outram et al. (2003). A power spectrum consistent with that of the 2QZ group is obtained. Differently from their approach, fitting of the power spectrum is investigated incorporating the nonlinear effects, the geometric distortion and the light-cone effect. It is shown that the QSO power spectrum is consistent with the Λ\Lambda cold dark matter (CDM) model with the matter density parameter Ωm=0.2∼0.5\Omega_m=0.2\sim0.5. Our constraint on the density parameter is rather weaker than that of the 2QZ group. We also show that the constraint slightly depends on the equation of state parameter ww of the dark energy. The constraint on ww from the QSO power spectrum is demonstrated, though it is not very tight.Comment: 15 pages, 5 figures, accepted for publication in the Astrophysical Journa

    Nearby Gas-Rich Low Surface Brightness Galaxies

    Full text link
    We examine the Fisher-Tully cz<1000 km/s galaxy sample to determine whether it is a complete and representative sample of all galaxy types, including low surface brightness populations, as has been recently claimed. We find that the sample is progressively more incomplete for galaxies with (1) smaller physical diameters at a fixed isophote and (2) lower HI masses. This is likely to lead to a significant undercounting of nearby gas-rich low surface brightness galaxies. However, through comparisons to other samples we can understand how the nearby galaxy counts need to be corrected, and we see some indications of environmental effects that probably result from the local high density of galaxies.Comment: 12 page, 2 figures, to appear in Ap

    Testing the Warm Dark Matter paradigm with large-scale structures

    Full text link
    We explore the impact of a LWDM cosmological scenario on the clustering properties of large-scale structure in the Universe. We do this by extending the halo model. The new development is that we consider two components to the mass density: one arising from mass in collapsed haloes, and the second from a smooth component of uncollapsed mass. Assuming that the nonlinear clustering of dark matter haloes can be understood, then from conservation arguments one can precisely calculate the clustering properties of the smooth component and its cross-correlation with haloes. We then explore how the three main ingredients of the halo calculations, the mass function, bias and density profiles are affected by WDM. We show that, relative to CDM: the mass function is suppressed by ~50%, for masses ~100 times the free-streaming mass-scale; the bias of low mass haloes can be boosted by up to 20%; core densities of haloes can be suppressed. We also examine the impact of relic thermal velocities on the density profiles, and find that these effects are constrained to scales r<1 kpc/h, and hence of little importance for dark matter tests, owing to uncertainties in the baryonic physics. We use our modified halo model to calculate the non-linear matter power spectrum, and find significant small-scale power in the model. However, relative to the CDM case, the power is suppressed. We then calculate the expected signal and noise that our set of LWDM models would give for a future weak lensing mission. We show that the models should in principle be separable at high significance. Finally, using the Fisher matrix formalism we forecast the limit on the WDM particle mass for a future full-sky weak lensing mission like Euclid or LSST. With Planck priors and using multipoles l<5000, we find that a lower limit of 2.6 keV should be easily achievable.Comment: Replaced with version accepted for publication in PRD. Inclusion of: new figure showing dependence of predictions on cut-off mass; new discussion of mass function; updated refs. 18 pages, 10 Figure

    Temperature and Kinematics of CIV Absorption Systems

    Full text link
    We use Keck HIRES spectra of three intermediate redshift QSOs to study the physical state and kinematics of the individual components of CIV selected heavy element absorption systems. Fewer than 8 % of all CIV lines with column densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A formal decomposition into thermal and non-thermal motion using the simultaneous presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2 km/s, corresponding to a temperature of 38,000 K although temperatures possibly in excess of 300,000 K occur occasionally. We also find tentative evidence for a mild increase of temperature with HI column density. Non-thermal motions within components are typically small (< 10 km/s) for most systems, indicative of a quiescent environment. The two-point correlation function (TPCF) of CIV systems on scales up to 500 km/s suggests that there is more than one source of velocity dispersion. The shape of the TPCF can be understood if the CIV systems are caused by ensembles of objects with the kinematics of dwarf galaxies on a small scale, while following the Hubble flow on a larger scale. Individual high redshift CIV components may be the building blocks of future normal galaxies in a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex pages, 4 Postscript figures, and psfig.sty included

    Scaling properties of the redshift power spectrum: theoretical models

    Get PDF
    We report the results of an analysis of the redshift power spectrum PS(k,μ)P^S(k,\mu) in three typical Cold Dark Matter (CDM) cosmological models, where μ\mu is the cosine of the angle between the wave vector and the line-of-sight. Two distinct biased tracers derived from the primordial density peaks of Bardeen et al. and the cluster-underweight model of Jing, Mo, & B\"orner are considered in addition to the pure dark matter models. Based on a large set of high resolution simulations, we have measured the redshift power spectrum for the three tracers from the linear to the nonlinear regime. We investigate the validity of the relation - guessed from linear theory - in the nonlinear regime PS(k,μ)=PR(k)[1+βμ2]2D(k,μ,σ12(k)), P^S(k,\mu)=P^R(k)[1+\beta\mu^2]^2D(k,\mu,\sigma_{12}(k)), where PR(k)P^R(k) is the real space power spectrum, and β\beta equals Ω00.6/bl\Omega_0^{0.6}/b_l. The damping function DD which should generally depend on kk, μ\mu, and σ12(k)\sigma_{12}(k), is found to be a function of only one variable kμσ12(k)k\mu\sigma_{12}(k). This scaling behavior extends into the nonlinear regime, while DD can be accurately expressed as a Lorentz function - well known from linear theory - for values D>0.1D > 0.1. The difference between σ12(k)\sigma_{12}(k) and the pairwise velocity dispersion defined by the 3-D peculiar velocity of the simulations (taking r=1/kr=1/k) is about 15%. Therefore σ12(k)\sigma_{12}(k) is a good indicator of the pairwise velocity dispersion. The exact functional form of DD depends on the cosmological model and on the bias scheme. We have given an accurate fitting formula for the functional form of DD for the models studied.Comment: accepted for publication in ApJ;24 pages with 7 figures include

    Can Geometric Test Probe the Cosmic Equation of State ?

    Get PDF
    Feasibility of the geometric test as a probe of the cosmic equation of state of the dark energy is discussed assuming the future 2dF QSO sample. We examine sensitivity of the QSO two-point correlation functions, which are theoretically computed incorporating the light-cone effect and the redshift distortions, as well as the nonlinear effect, to a bias model whose evolution is phenomenologically parameterized. It is shown that the correlation functions are sensitive on a mean amplitude of the bias and not to the speed of the redshift evolution. We will also demonstrate that an optimistic geometric test could suffer from confusion that a signal from the cosmological model can be confused with that from a stochastic character of the bias.Comment: 11 pages, including 3 figures, accepted for publication in ApJ

    Optimal Weighting Scheme in Redshift-space Power Spectrum Analysis and a Prospect for Measuring the Cosmic Equation of State

    Get PDF
    We develop a useful formula for power spectrum analysis for high and intermediate redshift galaxy samples, as an extension of the work by Feldman, Kaiser & Peacock (1994). An optimal weight factor, which minimizes the errors of the power spectrum estimator, is obtained so that the light-cone effect and redshift-space distortions are incorporated. Using this formula, we assess the feasibility of the power spectrum analysis with the luminous red galaxy (LRG) sample in the Sloan Digital Sky Survey as a probe of the equation of state of the dark energy. Fisher matrix analysis shows that the LRG sample can be sensitive to the equation of state around redshift z=0.13. It is also demonstrated that the LRG sample can constrain the equation of state with (1-sigma) error of 10% level, if other fundamental cosmological parameters are well determined independently. For the useful constraint, we point out the importance of modeling the bias taking the luminosity dependence into account. We also discuss the optimized strategy to constrain the equation of state using power spectrum analysis. For a sample with fixed total number of objects, it is most advantageous to have the sample with the mean number density 10−4h3Mpc−310^{-4} h^3{\rm Mpc}^{-3} in the range of the redshift 0.4 \simlt z\simlt 1.Comment: 27 pages, 7 figures, Final version accepted for publication in Astrophysical Journa
    • …
    corecore