55,577 research outputs found
Dust in the Local Group
How dust absorbs and scatters starlight as a function of wavelength (known as
the interstellar extinction curve) is crucial for correcting for the effects of
dust extinction in inferring the true luminosity and colors of reddened
astrophysical objects. Together with the extinction spectral features, the
extinction curve contains important information about the dust size
distribution and composition. This review summarizes our current knowledge of
the dust extinction of the Milky Way, three Local Group galaxies (i.e., the
Small and Large Magellanic Clouds, and M31), and galaxies beyond the Local
Group.Comment: 21 pages, 11 figures; invited review article published in "LESSONS
FROM THE LOCAL GROUP -- A Conference in Honour of David Block and Bruce
Elmegreen" eds. Freeman, K.C., Elmegreen, B.G., Block, D.L. & Woolway, M.
(SPRINGER: NEW YORK), pp. 85-10
The Mid-Infrared Extinction Law and its Variation in the Coalsack Nebula
In recent years the wavelength dependence of interstellar extinction from the
ultraviolet (UV), optical, through the near- and mid-infrared (IR) has been
studied extensively. Although it is well established that the UV/optical
extinction law varies significantly among the different lines of sight, it is
not clear how the IR extinction varies among various environments. In this
work, using the color-excess method and taking red giants as the extinction
tracer, we determine the interstellar extinction Alambda in the four
Spitzer/IRAC bands of the Coalsack nebula, a nearby starless dark cloud, based
on the data obtained from the 2MASS and Spitzer/GLIMPSE surveys. We select five
individual regions across the nebula that span a wide variety of physical
conditions, ranging from diffuse, translucent to dense environments, as traced
by the visual extinction, the Spitzer/MIPS 24micron emission, and CO emission.
We find that Alambda/AKs, the mid-IR extinction relative to AKs, decreases from
diffuse to dense environments, which may be explained in terms of ineffective
dust growth in dense regions. The mean extinction (relative to AKs) is
calculated for the four IRAC bands as well, which exhibits a flat mid-IR
extinction law, consistent with previous determinations for other regions. The
extinction in the IRAC 4.5micron band is anomalously high, much higher than
that of the other three IRAC bands. It cannot be explained in terms of CO and
CO2 ices. The mid-IR extinction in the four IRAC bands have also been derived
for four representative regions in the Coalsack Globule 2 which respectively
exhibit strong ice absorption, moderate or weak ice absorption, and very weak
or no ice absorption. The derived mid-IR extinction curves are all flat, with
Alambda/AKs increasing with the decrease of the H2O ice absorption optical
depth.Comment: 39 pages, 13 figures, accepted by Ap
Recommended from our members
Influence of spatial resolution on diurnal variability during the north American monsoon
Diurnal variability is an important yet poorly understood aspect of the warm-season precipitation regime over southwestern North America. In an effort to improve its understanding, diurnal variability is investigated numerically using the fifth-generation Pennsylvania State University (PSU)-NCAR Mesoscale Model (MM5). The goal herein is to determine the possible influence of spatial resolution on the diurnal cycle. The model is initialized every 48 h using the operational NCEP Eta Model 212 grid (40 km) model analysis. Model simulations are carried out at horizontal resolutions of both 9 and 3 km. Overall, the model reproduces the basic features of the diurnal cycle of rainfall over the core monsoon region of northwestern Mexico and the southwestern United States. In particular, the model captures the diurnal amplitude and phase, with heavier rainfall at high elevations along the Sierra Madre Occidental in the early-afternoon that shifts to lower elevations along the west slopes in the evening. A comparison to observations (gauge and radar data) shows that the high-resolution (3 km) model generates better rainfall distributions on time scales from monthly to hourly than the coarse-resolution (9 km) model, especially along the west slopes of the Sierra Madre Occidental. The model has difficulty with nighttime rainfall along the slopes, over the Gulf of California, and over Arizona. A comparison of surface wind data from three NCAR Integrated Sounding System (ISS) stations and the Quick Scatterometer (QuikSCAT) to the model reveals a low bias in the strength of the Gulf of California low-level jet, even at high resolution. The model results indicate that outflow from convection over northwestern Mexico can modulate the low-level jet, though the extent to which these relationships occur in nature was not investigated. © 2008 American Meteorological Society
Search for Spin-Dependent Short-Range Force Using Optically Polarized He Gas
We propose a new method to detect short-range \textit{P-} and \textit{T-}
violating interactions between nucleons, based on measuring the precession
frequency shift of polarized He nuclei in the presence of an unpolarized
mass. To maximize the sensitivity, a high-pressure He cell with thin glass
windows (250 ) is used to minimize the distance between the mass and
He. The magnetic field fluctuation is suppressed by using the He gas in
a different region of the cell as a magnetometer. Systematic uncertainties from
the magnetic properties of the mass are suppressed by flipping both the
magnetic field and spin directions. Without any magnetic shielding, our result
has already reached the sensitivity of the current best limit. With improvement
in uniformity and stability of the field, we can further improve the
sensitivity by two orders of magnitude over the force range from
m
Entropy in the NUT-Kerr-Newman Black Holes Due to an Arbitrary Spin Field
Membrane method is used to compute the entropy of the NUT-Kerr-Newman black
holes. It is found that even though the Euler characteristic is greater than
two, the Bekenstein-Hawking area law is still satisfied. The formula relating the entropy and the Euler characteristic becomes inapplicable for
non-extreme four dimensional NUT-Kerr-Newman black holes
On the Triality Theory for a Quartic Polynomial Optimization Problem
This paper presents a detailed proof of the triality theorem for a class of
fourth-order polynomial optimization problems. The method is based on linear
algebra but it solves an open problem on the double-min duality left in 2003.
Results show that the triality theory holds strongly in a tri-duality form if
the primal problem and its canonical dual have the same dimension; otherwise,
both the canonical min-max duality and the double-max duality still hold
strongly, but the double-min duality holds weakly in a symmetrical form. Four
numerical examples are presented to illustrate that this theory can be used to
identify not only the global minimum, but also the largest local minimum and
local maximum.Comment: 16 pages, 1 figure; J. Industrial and Management Optimization, 2011.
arXiv admin note: substantial text overlap with arXiv:1104.297
- …