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We propose a new method to detect short-range P- and T-violating interactions between nucleons,

based on measuring the precession frequency shift of polarized 3He nuclei in the presence of an

unpolarized mass. To maximize the sensitivity, a high-pressure 3He cell with thin glass windows

(250 �m) is used to minimize the distance between the mass and 3He. The magnetic field fluctuation

is suppressed by using the 3He gas in a different region of the cell as a magnetometer. Systematic

uncertainties from the magnetic properties of the mass are suppressed by flipping both the magnetic field

and spin directions. Without any magnetic shielding, our result has already reached the sensitivity of the

current best limit. With improvement in uniformity and stability of the field, we can further improve the

sensitivity by 2 orders of magnitude over the force range from 10�4 � 10�2 m.

DOI: 10.1103/PhysRevD.85.031505 PACS numbers: 14.20.Dh, 13.75.Cs

The possible existence of new forces with weak cou-
plings and macroscopic ranges have been proposed by
several authors [1–4]. A P-and T-violating macroscopic
force with an interaction range from cm to �m first pro-
posed in [5] has the form

VðzÞ ¼ gsgpℏ2�̂ � r̂
8�mn

�
1

r�
þ 1

r2

�
expð�r=�Þ; (1)

where gs and gp are the scalar and pseudoscalar coupling

constants, ℏ is the Plank’s constant, �̂ is the spin of the
polarized nucleon, r̂ ¼ ~r=r is the unit vector from
the unpolarized nucleon to the polarized nucleon, mn is
the nucleon mass, and � is the range of the force. This
short-range force is mediated by exchanging an axionlike
particle between unpolarized nucleons and polarized
nucleons. A similar interaction may also exist between
nucleon and electron. Many experimental efforts have
been devoted to search for this interaction between either
nucleons or nucleon and electron, and various techniques
have been used, such as sensitive torsion pendula [6,7],
clock comparisons between two different polarized species
[8–10], and measurements of neutron bound states on a flat
surface in the gravitational field [11]. Very recently, mea-
surements of the longitudinal relaxation rate �1 and trans-
verse relaxation rate �2 of polarized

3He gas were used to
search for this short-range interaction between nucleons
[12–15]. As the relaxation time of polarized 3He can be as
long as tens of hours, any new interaction with the polar-
ized 3He nuclei can lead to a visible change in the relaxa-
tion time. These measurements provide to our knowledge
the most stringent direct laboratory constraint on the
coupling constant product gsgp for a monopole-dipole

interaction between nucleons of the form in Eq. (1) over
distances from 10�6 to 10�2 m [15]. Note that this limit is

still more than 9 orders of magnitude larger than the
standard Axion coupling originally proposed to solve the
strong CP problem [8,16].
In this work, we present a new method to search for the

spin-dependent macroscopic force between nucleons by
measuring the frequency difference of optically polarized
3He gas with and without a nearby unpolarized mass. The
frequency difference due to the magnetic field gradient is a
first order effect, as such it is more sensitive than the
relaxation measurement because the gradient-induced re-
laxation is a second order effect [17,18]. We also per-
formed a pilot experiment to demonstrate how this
method works. With a modest stability of the magnetic
field, the sensitivity of this experiment already reaches the
current best laboratory limit on gsgp. With improved

stability of the magnetic field, the proposed method could
be used to improve the current best limit by two to 3 orders
of magnitude in the force range from 10�4 to 10�2 m.
The spin-dependent short-range interaction changes the

precession frequency of the polarized nuclei through the
interaction �̂ � r̂ in Eq. (1), which is similar to the well-

known �̂ � ~B interaction of a magnetic dipole moment �̂ in

an external magnetic field ~B. Consider a cylindrical cell
containing polarized 3He gas with its polarization pointing
in the z direction along the axis of the cylinder and a
block of unpolarized mass is placed next to the end of
the cell. The short-range interaction on each 3He atom
inside the cell can be obtained by integrating Eq. (1) over
the unpolarized source mass. In the limit case in which the
transverse dimensions (x, y direction) of the mass are much
larger than the force range, the mass can be approximated
as an infinite plane source with its normal pointing in the z
direction. In this limit the frequency shift from the planar
mass block is [14]
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�! ¼ gsgpNℏ�

4mn

e�z=�ð1� e�d0=�Þ; (2)

where z is the distance measured from the surface of the
mass block to the polarized 3He, N is the nucleon number
density of the mass, and d0 is the thickness of the mass
block. If the external magnetic field is uniform with a value
of B0, then the spin precession frequency in the presence of
the mass has a spatial dependence which can be written as

! ¼ !0 þ Ae�z=�; (3)

where A ¼ gsgpNℏ�
4mn

ð1� e�d0=�Þ. As the precession signal

received by the pickup coil is a weighted sum from all the
3He inside the cell, the signal induced in the pickup coil is

S /
Z 1

d
cosð!0tþ Ae�z=�tÞBðzÞdz; (4)

where d is the window thickness of the cell, BðzÞ is the field
profile of the pickup coil along the cell axis, and the
reciprocity theorem is applied here to compute the signal
induced in the pickup coil [19]. When A is zero, Eq. (4) is a
pure sinusoidal function with a well-defined frequency.
When A is nonzero Eq. (4) shifts the mean frequency of
the signal. The mean oscillation frequency determined
from Nc observed periods during a time T is f ¼ Nc=T.
In the presence of the interaction for the same number of
periods the time duration changes to T0 and the new
frequency is f0 ¼ Nc=T

0. The frequency difference is1

�f ¼ Nc

T0 �
Nc

T
ffi �f

�T

T
; (5)

where �T ¼ T0 � T. Equation (5) establishes a relation
between �f and �T. �T can be calculated for different
strengths gsgp and ranges � of the spin-dependent inter-

action by numerically integrating Eq. (4). For any given �,
the parameter A in Eq. (4) is tuned in such a way that the
calculated �T matches the experimentally determined
frequency shift�f. Hence, constraints on gsgp with differ-

ent values of � are established given the sensitivity of the
experiment.

In this pilot experiment we used a 7 amg2 high-pressure
3He cell originally constructed as a 3He gas target for two-
and three-body photo-disintegration experiments [20]. The
cell had two chambers, a spherically-shaped spin-exchange
optical pumping chamber and a 40 cm long cylindrical
target chamber connected by a glass tube (see Fig. 1). The
target chamber had two thin glass windows on its ends.
The thickness of the window was about 250 �m. A
Macor machinable ceramic mass block was used as the

unpolarized mass. It was repeatedly brought into contact
with and moved away from the cell window by a G-10 rod
connected to a stepper motor. The stepper motor moved the
mass to a final position with better than 10 �m repeat-
ability, more than an order of magnitude smaller than the
cell window thickness. Two identical pickup coils were
mounted right below each window. Pickup coil Awas used
to measure the frequency of the polarized 3He nuclei
influenced by the mass; pickup coil B was used to monitor
the magnetic holding field. The 40 cm long 3He cell was
positioned at the center of a Helmholtz coil pair. Because
of fairly large gradients at the end of the cylindrical cham-
ber, two identical two-axis gradient coil pairs (dashed line
in Fig. 1) were added at both ends to compensate the
gradients from the Helmholtz coils and background fields.
The measured transverse relaxation time T2 of the 3He
signal is greater than 1 s with this arrangement.
Free induction decay (FID) at 24 kHz was performed to

measure the 3He precession signal. The RF pulse with
small tipping angle was applied to make the polarization
loss negligible. The precession signal is digitized and
recorded by the computer. In order to determine the fre-
quency unambiguously, the acquisition time stopped at the
instant when the signal-to-noise ratio is either below 10 or
at 0.2 s, whichever comes first. The frequency is computed
by counting the periods during the acquisition time. In a
7 amg 3He gas cell, the diffusion constant is about
0:27 cm2=s [21], and it is known that the effective diffusion
rate is lowered at the cell boundary [22]. Therefore effects
from the diffusion of the 3He can be ignored during the FID
measurement and it is valid to use Eq. (4) to analyze the

FIG. 1. The diagram of the test experiment apparatus (not to
scale). The cylindrical cell axis is the z direction. The cell
contains 7 amg 3He gas and is optically pumped in the pumping
chamber to about 40% polarization. The coils in the dashed lines
are gradient coils to actively compensate the gradients from the
Helmholtz coil and other background fields.

1When S/N becomes the limiting factor of the measurement
(not the case in the present work), phase difference or frequency
spectrum may provide a better measurement of the frequency
shift than the peak counting method.

21 amg is the number density of 1 atm gas molecules at 0�C.
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experimental data. Each measurement cycle contains two
measurements: first with the mass in contact with the
window (in position) and next with the mass moved far
away from the window (out position). Simultaneous mea-
surements at pickup coil B were performed to monitor the
magnetic field fluctuations. The peak to peak variation
of the field is about 5� 10�3%. Removing the field fluc-
tuations measured by coil B reduced the peak to peak
variation of the field to 4� 10�4%. After the field correc-
tion, the frequency difference between the ‘‘in’’ and ‘‘out’’
positions is calculated as �f ¼ fin � fout.

The magnetic susceptibility of the mass can change the
field at the location of the 3He through its effect on the
holding field and therefore lead to a systematic effect.
Although the magnetic susceptibility of Macor ceramic is
known to be small enough not to cause a systematic error in
this test experiment, the real material can in principle
contain paramagnetic or even ferromagnetic impurities.
Paramagnetic impurities would increase the local field
strength (and therefore the 3He precession frequency)
independent of field direction. The spin-dependent inter-
action can increase or decrease the precession frequency
depending on the magnetic holding field direction. We
therefore can isolate a possible spin-dependent interaction
from paramagnetic effects by flipping the magnetic field.
However, a frozen-in field from possible ferromagnetic
impurities has the same magnetic field dependence as the
spin-dependent interaction, which makes it difficult to
separate them apart. The most likely ferromagnetic con-
tamination of the mass block comes from machining
process, during which ferromagnetic tools are usually
used to cut the material. To minimize this effect, cutting
tools with diamond tips are used to ensure that there is no
physical contact between the metallic part of the tools and
the surface of the block. Additionally, we also flip spin

direction in order to cancel any spin-dependent systematic
effect in the system if there is any. Therefore, we took data
in four different configurations for B field and spin direc-
tions, �fþþ, �f�þ, �f��, and �fþ�, representing B=S :
þþ , B=S : �þ , B=S : �, and B=S : þ� , respectively.
If �fB represents the field-dependent frequency shift, �fS
represents spin-dependent frequency shift, and �f0 repre-
sents frequency shift without B or S dependence, then

�fþþ ¼ þ�fB þ�fS þ�f0 (6)

�f�þ ¼ ��fB þ�fS þ�f0 (7)

�f�� ¼ ��fB ��fS þ�f0 (8)

�fþ� ¼ þ�fB ��fS þ�f0: (9)

In this notation, the short-range force induced �fB can be
expressed as

�fB ¼ 1

4
ð�fþþ þ �fþ� ��f�� � �f�þÞ: (10)

The uncertainty of �fB is given by

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þþ þ �2þ� þ �2�� þ �2�þ

q
; (11)

where �þþ, ��þ, ���, and �þ� are the uncertainties of
�fþþ,�f�þ,�f��, and�fþ�, respectively. The noise in
the measurement is mainly due to the magnetic field fluc-
tuation, which limits the uncertainties of the frequency
measurements.
We performed 100 measurement cycles for each of the

four configurations to determine the average frequency
difference between the two mass positions. The frequency
differences from the spin-dependent force for these runs
are shown in Fig. 2. The average frequency difference of
100 measurements was �fB ¼ �0:003� 0:005 Hz, con-
sistent with zero.
Equation (10) is then used to calculate the frequency

difference from the spin-dependent short-range force to
place an upper limit on gsgp as a function of �. For f ¼
24 kHz and �f ¼ 0:005 Hz, Eq. (5) yields �T ¼ �2:1�
10�7T s. With a fixed frequency shift, �T should increase
linearly with respect to the acquisition time T.
Theoretically, �T is obtained by comparing Eq. (4) with
a sinusoidal function in absence of the force. With a real
pick-coil profile, Eq. (4) is obtained by numerical integra-
tion, using the actual geometry of the experiment. The
resultant �T as a function of T is shown in Fig. 3 (the
upper black curve). Surprisingly, �T increases linearly
only for a short period of time. As time elapses, �T
oscillates around a constant value, indicating that the fre-
quency shift due to this exponential type of force is not
fixed and diminishes at large T. This striking behavior
suggests that one will not gain more information from

FIG. 2 (color online). The frequency difference correlated with
the position of the ceramic mass block. The error bars show the
standard deviation of the magnetic holding field after correction
by coil B.
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longer measurement time though the frequency resolution
is improved by doing so.

An closedform solution of Eq. (4) can be obtained if one
approximates the real profile of BðzÞ by a rectangular
function with a cut-off position w mimicing the width of
the profile. In this case, the upper limit of the integral is
replaced by w, and the integration yields

SðtÞ ¼ �½cosð!0tÞðCiðAe�ðd=�ÞtÞ � CiðAe�ðw=�ÞtÞÞ
� sinð!0tÞðSiðAe�ðd=�ÞtÞ � SiðAe�ðw=�ÞtÞÞ�; (12)

where CiðxÞ is Cosine Integral and defined as CiðxÞ ¼
�R1

x
cost
t dt; SiðxÞ is Sine Integral and defined as SiðxÞ ¼R

x
0
sint
t dt [23]. One can use Eq. (12) to calculate the �T in

Eq. (5). To the first order, �T can be expressed as

�T ¼ � SiðAe�ðd=�ÞTÞ � SiðAe�ðw=�ÞTÞ
CiðAe�ðd=�ÞTÞ � CiðAe�ðw=�ÞTÞ : (13)

Using the value of d ¼ 250 �m and w ¼ 5:825 cm,
Eq. (13) is plotted in Fig. 3 (the lower red curve). It is
surprising to find that �T does not increase linearly
with respect to T all the way up. At certain point, �T
becomes more or less a constant, which means the phase
difference due to the short-range force stop accumulating
after certain time. A longer measurement time will not
increase the phase difference due to the short-range force.
This behavior is the result of the inhomogeneous broad-
ening due to the varying distance between the 3He spin and
the mass.

This simple approximation yields a satisfactory result in
terms of the time at which the linear relationship breaks
down (The exact solution is plotted as a black curve in
Fig. 3). In our experiment, the maximum measurement

time is less than 0.2 s to guarantee that the FID measure-
ment is in the linear region, so that the frequency compari-
son is valid even the measurement time for each
configuration is slightly different.
By choosing different values of �, the constraints on the

coupling constants gsgp are found and plotted as a solid

line in Fig. 4. The 250 �mwindow thickness of the double
chamber glass cell allows us to constrain interactions
ranges � down to 10�4 m. The dominant source of the
uncertainty in our experiment came from magnetic field
fluctuations. The gradient compensation coils, needed to
achieve an uniform field in our apparatus, added uncorre-
lated magnetic field noise to the holding field as the gra-
dient coils were powered by independent power supplies.
There are many avenues for the improvement of the

measurement sensitivity using this technique. One can
use a dedicated 3He cell with a shorter length and add
magnetic shielding instead of gradient coils to improve the
field uniformity and stability. In [24], the authors con-
ducted a precision frequency measurement using polarized
gases in an apparatus with 3 layers of cylindrical � metal
shielding for field uniformity and a comagnetometer tech-
nique to reduce the magnetic field noise by 3 to 4 orders of
magnitude. They achieved a precision of 10�6 Hz out of
1000 Hz, 2 orders of magnitude better than our pilot

experiment. In Fig. 4 we show the limits on gsgp (dotted

line) which could be achieved with this technique using the

|∆
T

| (
s)

|∆
T

| (
s)

T (s)

T (s)

FIG. 3 (color online). The upper curve shows the j�Tj as a
function of T, using the real field profile of the pickup coil. The
lower curve shows the same curve but with the pickup coil
profile approximated by a rectangular function. The inset of
the figure shows the linear behavior of j�Tj at small T.

EXCLUDED REGION

FIG. 4 (color online). Constraints on the coupling constant
product gsgp of the spin-dependent force as a function of the

range � and the equivalent mass of the axionlike particle
mediating the short-range interaction. The dashed line is the
result from [8], the dash-dotted line is the reanalysis of the T2

measurements of [25] by [15], the solid line is the analysis of our
present experiment, and the dotted line is a projected sensitivity
achievable using our method based on the stability of the
magnetic field demonstrated in [24]. The dark gray is the
excluded region and the light gray is the region that could be
excluded with the improved field stability.
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sensitivity demonstrated in [24] assuming all other geo-

metric parameters (window thickness, pickup coil size,

etc.) are unchanged. As shown in Fig. 4, this projected

sensitivity would represent a significant improvement in

the � region of 10�2 to 10�4 m, compared with the best

existing laboratory limit derived by the authors of [15],

shown as the dotted-dashed line, based on the results of a

T2 measurement from [25].
The sensitivity of the experiment below � ¼ 10�4 m is

clearly limited as the thickness of the window becomes
much larger than the force range. The 7 amg 3He cell has
an internal pressure of more than 10 atm at 200�C and
the 250 �m window thickness is needed for strength.
However, the high-pressure is not necessary for this
experiment. A 1 amg 3He cell with reduced window
thickness could be used to improve the sensitivity of the
measurement, especially in the �<10�4m range. Another
order of magnitude improvement on the sensitivity could

be achieved if denser material was used as the unpolarized
mass, such as pure copper or tungsten. We conclude that
our proposed method shows a promising sensitivity, with at
least 1 to 2 orders of magnitude improvement over the
current best limit possible in a dedicated experiment with
better magnetic field stability. A even higher sensitivity
could be achieved if a thinner wall for the 3He cell and
denser material is used.
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