45 research outputs found

    Variance-constrained control for uncertain stochastic systems with missing measurements

    Get PDF
    Copyright [2005] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we are concerned with a new control problem for uncertain discrete-time stochastic systems with missing measurements. The parameter uncertainties are allowed to be norm-bounded and enter into the state matrix. The system measurements may be unavailable (i.e., missing data) at any sample time, and the probability of the occurrence of missing data is assumed to be known. The purpose of this problem is to design an output feedback controller such that, for all admissible parameter uncertainties and all possible incomplete observations, the system state of the closed-loop system is mean square bounded, and the steady-state variance of each state is not more than the individual prescribed upper bound. We show that the addressed problem can be solved by means of algebraic matrix inequalities. The explicit expression of the desired robust controllers is derived in terms of some free parameters, which may be exploited to achieve further performance requirements. An illustrative numerical example is provided to demonstrate the usefulness and flexibility of the proposed design approach

    Robust finite-horizon filtering for stochastic systems with missing measurements

    Get PDF
    Copyright [2005] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this letter, we consider the robust finite-horizon filtering problem for a class of discrete time-varying systems with missing measurements and norm-bounded parameter uncertainties. The missing measurements are described by a binary switching sequence satisfying a conditional probability distribution. An upper bound for the state estimation error variance is first derived for all possible missing observations and all admissible parameter uncertainties. Then, a robust filter is designed, guaranteeing that the variance of the state estimation error is not more than the prescribed upper bound. It is shown that the desired filter can be obtained in terms of the solutions to two discrete Riccati difference equations, which are of a form suitable for recursive computation in online applications. A simulation example is presented to show the effectiveness of the proposed approach by comparing to the traditional Kalman filtering method

    Robust H∞ filtering for markovian jump systems with randomly occurring nonlinearities and sensor saturation: The finite-horizon case

    Get PDF
    This article is posted with the permission of IEEE - Copyright @ 2011 IEEEThis paper addresses the robust H∞ filtering problem for a class of discrete time-varying Markovian jump systems with randomly occurring nonlinearities and sensor saturation. Two kinds of transition probability matrices for the Markovian process are considered, namely, the one with polytopic uncertainties and the one with partially unknown entries. The nonlinear disturbances are assumed to occur randomly according to stochastic variables satisfying the Bernoulli distributions. The main purpose of this paper is to design a robust filter, over a given finite-horizon, such that the H∞ disturbance attenuation level is guaranteed for the time-varying Markovian jump systems in the presence of both the randomly occurring nonlinearities and the sensor saturation. Sufficient conditions are established for the existence of the desired filter satisfying the H∞ performance constraint in terms of a set of recursive linear matrix inequalities. Simulation results demonstrate the effectiveness of the developed filter design scheme.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60825303, and 61004067, National 973 Project under Grant 2009CB320600, the Key Laboratory of Integrated Automation for the Process Industry (Northeastern University) from the Ministry of Education of China, the Engineering and Physical Sciences Research Council (EPSRC) of the U.K., under Grant GR/S27658/01, the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Multiobjective synchronization of coupled systems

    Get PDF
    Copyright @ 2011 American Institute of PhysicsSynchronization of coupled chaotic systems has been a subject of great interest and importance, in theory but also various fields of application, such as secure communication and neuroscience. Recently, based on stability theory, synchronization of coupled chaotic systems by designing appropriate coupling has been widely investigated. However, almost all the available results have been focusing on ensuring the synchronization of coupled chaotic systems with as small coupling strengths as possible. In this contribution, we study multiobjective synchronization of coupled chaotic systems by considering two objectives in parallel, i. e., minimizing optimization of coupling strength and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach. The constraints on the coupling form are also investigated by formulating the problem into a multiobjective constraint problem. We find that the proposed evolutionary method can outperform conventional adaptive strategy in several respects. The results presented in this paper can be extended into nonlinear time-series analysis, synchronization of complex networks and have various applications

    A new framework for consensus for discrete-time directed networks of multi-agents with distributed delays

    Get PDF
    Copyright @ 2012 Taylor & FrancisIn this article, the distributed consensus problem is considered for discrete-time delayed networks of dynamic agents with fixed topologies, where the networks under investigation are directed and the time-delays involved are distributed time delays including a single or multiple time delay(s) as special cases. By using the invariance principle of delay difference systems, a new unified framework is established to deal with the consensus for the discrete-time delayed multi-agent system. It is shown that the addressed discrete-time network with arbitrary distributed time delays reaches consensus provided that it is strongly connected. A numerical example is presented to illustrate the proposed methods.This work was supported in part by City University of Hong Kong under Grant 7008114, the Royal Society of the UK, the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313

    Robust synchronization of a class of coupled delayed networks with multiple stochastic disturbances: The continuous-time case

    Get PDF
    In this paper, the robust synchronization problem is investigated for a new class of continuous-time complex networks that involve parameter uncertainties, time-varying delays, constant and delayed couplings, as well as multiple stochastic disturbances. The norm-bounded uncertainties exist in all the network parameters after decoupling, and the stochastic disturbances are assumed to be Brownian motions that act on the constant coupling term, the delayed coupling term as well as the overall network dynamics. Such multiple stochastic disturbances could reflect more realistic dynamical behaviors of the coupled complex network presented within a noisy environment. By using a combination of the Lyapunov functional method, the robust analysis tool, the stochastic analysis techniques and the properties of Kronecker product, we derive several delay-dependent sufficient conditions that ensure the coupled complex network to be globally robustly synchronized in the mean square for all admissible parameter uncertainties. The criteria obtained in this paper are in the form of linear matrix inequalities (LMIs) whose solution can be easily calculated by using the standard numerical software. The main results are shown to be general enough to cover many existing ones reported in the literature. Simulation examples are presented to demonstrate the feasibility and applicability of the proposed results

    Output feedback robust H∞ control with D-stability and variance constraints: A parametrization approach

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2005 Springer Ltd.In this paper, we study the problem of robust H∞ controller design for uncertain continuous-time systems with variance and D-stability constraints. The parameter uncertainties are allowed to be unstructured but norm-bounded. The aim of this problem is the design of an output feedback controller such that, for all admissible uncertainties, the closed-loop poles be placed within a specified disk, the H∞ norm bound constraint on the disturbance rejection attenuation be guaranteed, and the steady-state variance for each state of the closed-loop system be no more than the prescribed individual upper bound, simultaneously. A parametric design method is exploited to solve the problem addressed. Sufficient conditions for the existence of the desired controllers are derived by using the generalized inverse theory. The analytical expression of the set of desired controllers is also presented. It is shown that the obtained results can be readily extended to the dynamic output feedback case and the discrete-time case
    corecore