442 research outputs found
Exploring high-end climate change scenarios for flood protection of the Netherlands
This international scientific assessment has been carried out at the request of the Dutch Delta Committee. The "Deltacommissie" requested that the assessment explore the high-end climate change scenarios for flood protection of the Netherlands. It is a state-of–the art scientific assessment of the upper bound values and longer term projections (for sea level rise up to 2200) of climate induced sea level rise, changing storm surge conditions and peak discharge of river Rhine. It comprises a review of recent studies, model projections and expert opinions of more than 20 leading climate scientists from different countries around the North Sea, Australia and the US
Orbital and spin physics in LiNiO2 and NaNiO2
We derive a spin-orbital Hamiltonian for a triangular lattice of e_g orbital
degenerate (Ni^{3+}) transition metal ions interacting via 90 degree
superexchange involving (O^{2-}) anions, taking into account the on-site
Coulomb interactions on both the anions and the transition metal ions. The
derived interactions in the spin-orbital model are strongly frustrated, with
the strongest orbital interactions selecting different orbitals for pairs of Ni
ions along the three different lattice directions. In the orbital ordered
phase, favoured in mean field theory, the spin-orbital interaction can play an
important role by breaking the U(1) symmetry generated by the much stronger
orbital interaction and restoring the threefold symmetry of the lattice. As a
result the effective magnetic exchange is non-uniform and includes both
ferromagnetic and antiferromagnetic spin interactions. Since ferromagnetic
interactions still dominate, this offers yet insufficient explanation for the
absence of magnetic order and the low-temperature behaviour of the magnetic
susceptibility of stoichiometric LiNiO_2. The scenario proposed to explain the
observed difference in the physical properties of LiNiO_2 and NaNiO_2 includes
small covalency of Ni-O-Li-O-Ni bonds inducing weaker interplane superexchange
in LiNiO_2, insufficient to stabilize orbital long-range order in the presence
of stronger intraplane competition between superexchange and Jahn-Teller
coupling.Comment: 33 pages, 12 postscript figures, uses iopams.sty . This article
features in New Journal of Physics as part of a Focus Issue on Orbital
Physics - all contributions may be freely accessed at
(http://stacks.iop.org/1367-2630/6/i=1/a=E05). The published version of this
article may be found at http://stacks.iop.org/1367-2630/7/12
Steel septum magnets for the LHC beam injection and extraction
The Large Hadron Collider (LHC) will be a superconducting accelerator and collider to be installed in the existing underground LEP ring tunnel at CERN. It will provide proton-proton collisions with a centre of mass energy of 14 TeV. The proton beams coming from the SPS will be injected into the LHC at 450 GeV by vertically deflecting kicker magnets and horizontally deflecting steel septum magnets (MSI). The proton beams will be dumped from the LHC with the help of two extraction systems comprising horizontally deflecting kicker magnets and vertically deflecting steel septum magnets (MSD). The MSI and MSD septa are laminated iron-dominated magnets using an all welded construction. The yokes are constructed from two different half cores, called coil core and septum core. The septum cores comprise circular holes for the circulating beams. This avoids the need for careful alignment of the usually wedge-shaped septum blades used in classical Lambertson magnets. The MSI and MSD septum magnets were designed and built in a collaboration between IHEP (Protvino) and CERN (Geneva). This paper presents the magnet design, the experience gathered during the preseries construction, and gives the results of detailed magnetic measurements of the MSIB and MSDC preseries magnets
Requirements for the LHC collimation system
The LHC requires efficient collimation during all phases of the beam cycle. Collimation plays important roles in prevention of magnet quenches from regular beam diffusion, detection of abnormal beam loss and subsequent beam abort, radiation protection, and passive protection of the superconducting magnets in case of failures. The different roles of collimation and the high beam power in the LHC impose many challenges for the design of the collimation system. In particular, the collimators must be able to withstand the expected particle losses. The requirements for the LHC collimation system are presented
Polaron and bipolaron formation in the Hubbard-Holstein model: role of next-nearest neighbor electron hopping
The influence of next-nearest neighbor electron hopping, , on the
polaron and bipolaron formation in a square Hubbard-Holstein model is
investigated within a variational approach. The results for electron-phonon and
electron-electron correlation functions show that a negative value of
induces a strong anisotropy in the lattice distortions favoring
the formation of nearest neighbor intersite bipolaron. The role of
, electron-phonon and electron-electron interactions is briefly
discussed in view of the formation of charged striped domains.Comment: 4 figure
Recent Change—North Sea
This chapter discusses past and ongoing change in the following physical variables within the North Sea: temperature, salinity and stratification; currents and circulation; mean sea level; and extreme sea levels. Also considered are carbon dioxide; pH and nutrients; oxygen; suspended particulate matter and turbidity; coastal erosion, sedimentation and morphology; and sea ice. The distinctive character of the Wadden Sea is addressed, with a particular focus on nutrients and sediments. This chapter covers the past 200 years and focuses on the historical development of evidence (measurements, process understanding and models), the form, duration and accuracy of the evidence available, and what the evidence shows in terms of the state and trends in the respective variables. Much work has focused on detecting long-term change in the North Sea region, either from measurements or with models. Attempts to attribute such changes to, for example, anthropogenic forcing are still missing for the North Sea. Studies are urgently needed to assess consistency between observed changes and current expectations, in order to increase the level of confidence in projections of expected future conditions
The trigger system of the NOMAD experiment
The NOMAD trigger system is described in the present paper. It is made up of a largearea plastic scintillator veto system, two trigger scintillator planes inside a 0.4~Tmagnetic field and their associated trigger electronics. Special features of the systemconsist of the use of proximity mesh photomultipliers which allow the trigger scintillators to operate in the magnetic field, and the use of custom-built VME moduleswhich perform the trigger logic decisions, the signal synchronisation and gate generation,event counting and livetime calculations. This paper also includes a description of each of the NOMAD triggers, with their calculated and measured rates, efficiencies and livetimes
- …