1,995 research outputs found

    Calibration of White Dwarf cooling sequences: theoretical uncertainty

    Full text link
    White Dwarf luminosities are powerful age indicators, whose calibration should be based on reliable models. We discuss the uncertainty of some chemical and physical parameters and their influence on the age estimated by means of white dwarf cooling sequences. Models at the beginning of the white dwarf sequence have been obtained on the base of progenitor evolutionary tracks computed starting from the zero age horizontal branch and for a typical halo chemical composition (Z=0.0001, Y=0.23). The uncertainties due to nuclear reaction rates, convection, mass loss and initial chemical composition are discussed. Then, various cooling sequences for a typical white dwarf mass (M=0.6 Mo) have been calculated under different assumptions on some input physics, namely: conductive opacity, contribution of the ion-electron interaction to the free energy and microscopic diffusion. Finally we present the evolution of white dwarfs having mass ranging between 0.5 and 0.9 Mo. Much effort has been spent to extend the equation of state down to the low temperature and high density regime. An analysis of the latest improvement in the physics of white dwarf interiors is presented. We conclude that at the faint end of the cooling sequence (log L/Lo=-5.5) the present overall uncertainty on the age is of the order of 20%, which correspond to about 3 Gyr. We suggest that this uncertainty could be substantially reduced by improving our knowledge of the conductive opacity (especially in the partially degenerate regime) and by fixing the internal stratification of C and O.Comment: 14 figures, accepted by Ap

    Contribution of White Dwarfs to Cluster Masses

    Get PDF
    I present a literature search through 31 July 1997 of white dwarfs (WDs) in open and globular clusters. There are 36 single WDs and 5 WDs in binaries known among 13 open clusters, and 340 single WDs and 11 WDs in binaries known among 11 globular clusters. From these data I have calculated WD mass fractions for four open clusters (the Pleiades, NGC 2168, NGC 3532, and the Hyades) and one globular cluster (NGC 6121). I develop a simple model of cluster evolution that incorporates stellar evolution but not dynamical evolution to interpret the WD mass fractions. I augment the results of my simple model with N-body simulations incorporating stellar evolution (Terlevich 1987; de la Feunte Marcos 1996; Vesperini & Heggie 1997). I find that even though these clusters undergo moderate to strong kinematical evolution the WD mass fraction is relatively insensitive to kinematical evolution. By comparing the cluster mass functions to that of the Galactic disk, and incorporating plausibility arguments for the mass function of the Galactic halo, I estimate the WD mass fraction in these two populations. I assume the Galactic disk is ~10 Gyrs old (Winget et al. 1987; Liebert, Dahn, & Monet 1988; Oswalt et al. 1996) and that the Galactic halo is ~12 Gyrs old (Reid 1997b; Gratton et al. 1997; Chaboyer et al. 1998), although the WD mass fraction is insensitive to age in this range. I find that the Galactic halo should contain 8 to 9% (alpha = -2.35) or perhaps as much as 15 to 17% (alpha = -2.0) of its stellar mass in the form of WDs. The Galactic disk WD mass fraction should be 6 to 7% (alpha = -2.35), consistent with the empirical estimates of 3 to 7% (Liebert, Dahn, & Monet 1988; Oswalt et al. 1996). (abridged)Comment: 20 pages, uuencoded gunzip'ed latex + 3 postscrip figures, to be published in AJ, April, 199

    Results on Plasma Focusing of High Energy Density Electron and Positron Beams

    Get PDF
    We present results from the SLAC E-150 experiment on plasma focusing of high energy density electron and, for the first time, positron beams. We also discuss measurements on plasma lens-induced synchrotron radiation, longitudinal dynamics of plasma focusing, and laser- and beam-plasma interactions.Comment: LINAC 2000 paper No. THC13, Monterey, CA. Aug.21-25,2000, 3 pages, 2 figure

    Evolutionary calculations of phase separation in crystallizing white dwarf stars

    Get PDF
    We present an exploration of the significance of Carbon/Oxygen phase separation in white dwarf stars in the context of self-consistent evolutionary calculations. Because phase separation can potentially increase the calculated ages of the oldest white dwarfs, it can affect the age of the Galactic disk as derived from the downturn in the white dwarf luminosity function. We find that the largest possible increase in ages due to phase separation is 1.5 Gyr, with a most likely value of approximately 0.6 Gyr, depending on the parameters of our white dwarf models. The most important factors influencing the size of this delay are the total stellar mass, the initial composition profile, and the phase diagram assumed for crystallization. We find a maximum age delay in models with masses of 0.6 solar masses, which is near the peak in the observed white dwarf mass distribution. We find that varying the opacities (via the metallicity) has little effect on the calculated age delays. In the context of Galactic evolution, age estimates for the oldest Galactic globular clusters range from 11.5 to 16 Gyr, and depend on a variety of parameters. In addition, a 4 to 6 Gyr delay is expected between the formation of the globular clusters and that of the Galactic thin disk, while the observed white dwarf luminosity function gives an age estimate for the thin disk of 9.5 +/-1.0 Gyr, without including the effect of phase separation. Using the above numbers, we see that phase separation could add between 0 to 3 Gyr to the white dwarf ages and still be consistent with the overall picture of Galaxy formation. Our calculated maximum value of 1.5 Gyr fits within these bounds, as does our best guess value of 0.6 Gyr.Comment: 13 total pages, 8 figures, 3 tables, accepted for publication in the Astrophysical Journal on May 25, 199

    A New Look At Carbon Abundances In Planetary Nebulae. IV. Implications For Stellar Nucleosynthesis

    Full text link
    This paper is the fourth and final report on a project designed to study carbon abundances in a sample of planetary nebulae representing a broad range in progenitor mass and metallicity. We present newly acquired optical spectrophotometric data for three Galactic planetary nebulae IC 418, NGC 2392, and NGC 3242 and combine them with UV data from the IUE Final Archive for identical positions in each nebula to determine accurate abundances of He, C, N, O, and Ne at one or more locations in each object. We then collect abundances of these elements for the entire sample and compare them with theoretical predictions of planetary nebula abundances from a grid of intermediate mass star models. We find some consistency between observations and theory, lending modest support to our current understanding of nucleosynthesis in stars below 8 M_o in birth mass. Overall, we believe that observed abundances agree with theoretical predictions to well within an order of magnitude but probably not better than within a factor of 2 or 3. But even this level of consistency between observation and theory enhances the validity of published intermediate-mass stellar yields of carbon and nitrogen in the study of the abundance evolution of these elements.Comment: 41 pages, 11 figures. Accepted for publication in the Astrophysical Journa

    Observation of Plasma Focusing of a 28.5 GeV Positron Beam

    Full text link
    The observation of plasma focusing of a 28.5 GeV positron beam is reported. The plasma was formed by ionizing a nitrogen jet only 3 mm thick. Simultaneous focusing in both transverse dimensions was observed with effective focusing strengths of order Tesla per micron. The minimum area of the beam spot was reduced by a factor of 2.0 +/- 0.3 by the plasma. The longitudinal beam envelope was measured and compared with numerical calculations

    White Dwarfs in Globular Clusters: HST Observations of M4

    Get PDF
    Using WFPC2 on the Hubble Space Telescope, we have isolated a sample of 258 white dwarfs (WDs) in the Galactic globular cluster M4. Fields at three radial distances from the cluster center were observed and sizeable WD populations were found in all three. The location of these WDs in the color-magnitude diagram, their mean mass of 0.51(±0.03 \pm 0.03)M⊙_{\odot}, and their luminosity function confirm basic tenets of stellar evolution theory and support the results from current WD cooling theory. The WDs are used to extend the cluster main-sequence mass function upward to stars that have already completed their nuclear evolution. The WD/red dwarf binary frequency in M4 is investigated and found to be at most a few percent of all the main-sequence stars. The most ancient WDs found are about 9 Gyr old, a level which is set solely by the photometric limits of our data. Even though this is less than the age of M4, we discuss how these cooling WDs can eventually be used to check the turnoff ages of globular clusters and hence constrain the age of the Universe.Comment: 46 pages, latex, no figures included, figures available at ftp://ftp.astro.ubc.ca/pub/richer/wdfig.uu size 2.7Mb. To be published in the Astrophysical Journa

    The planetary nebula NGC 1360, a test case of magnetic collimation and evolution after the fast wind

    Full text link
    The central star of this nebula has an observed intense magnetic field and the fast wind is no longer present, indicating that a back flow process has probably developed. Long-slit, spatially resolved echelle spectra have been obtained across the main body of NGC 1360 and over its system of bipolar jets. Deep images of the knotty structures of the jets have also been obtained. The data allow a detailed study of the structure and kinematics of this object and the results are modeled considering the effects of a magnetic collimation process in the development of the nebula and then switching off the fast stellar wind to follow its evolution to its current state. The model is able to successfully reproduce many of the key features of NGC 1360 under these premises.Comment: 16 pages, 7 figures. ApJ in pres
    • 

    corecore