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ABSTRACT 

We present a resonant cavity approach for non-invasive, pulse-to-pulse, beam 

emittance measurements of non-circular multi-bunch beams. In a resonant cavity, 

desired field components can be enhanced up to πλ /LQ , where λLQ is the loaded 

quality factor of the resonant mode λ , when the cavity resonant mode matches 

the bunch frequency of a bunch-train beam pulse. In particular, a quad-cavity, 

with its quadrupole mode (TM220 for rectangular cavities) at beam operating 

frequency, rotated 45° with respect to the beamline, extracts the beam quadrupole 

moment exclusively, utilizing the symmetry of the cavity and some simple 
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networks to suppress common modes. Six successive beam quadrupole moment 

measurements, performed at different betatron phases in a linear transport system 

determine the beam emittance, i.e. the beam size and shape in the beam's phase 

space, if the beam current and position at these points are known. In the presence 

of x-y beam coupling, ten measurements are required. One measurement alone 

provides the rms-beam size of a large aspect ratio beam. The resolution for such a 

measurement of rms-beam size with the rectangular quad-cavity monitor 

presented in this article is estimated to be on the order of ten microns. A prototype 

quad-cavity was fabricated and preliminary beam tests were performed at the 

Next Linear Collider Test Accelerator (NLCTA) at the Stanford Linear 

Accelerator Center (SLAC). Results were mainly limited by beam jitter and 

uncertainty in the beam position measurement at the cavity location. This 

motivated the development of a position-emittance integrated monitor.1  



 3

 

I.  INTRODUCTION 

Beam emittance is a key beam parameter, along with beam position, for accelerator 

operations. This article considers a beam emittance measurement method in an X-band linear 

collider where beam power gets extremely high (~13 MW average and half a terawatt peak) and 

beam cross sections are in the sub-millimeter range. Standard emittance measurement devices 

such as pepper-pot foils or wire scanners are not applicable to such beams and would be 

vaporized by them. Currently, a non-destructive, single-pulse measurement scheme is not 

available for such beams, and consequently beam tune-up takes hours. A pulse-to-pulse beam 

emittance measurement based on striplines was first suggested by Miller, et al.2 Since then 

several new schemes of measuring beam emittance have been presented.3 In addition to 

durability, the resonant cavity approach provides stronger coupling between the beam and 

desired cavity mode than non-resonant approaches and a high signal-to-noise ratio by resonance 

of a cavity mode at the bunch frequency. The general concept of resonant cavity approach 

presented by Whittum and Kolomensky4 as a beam position monitor (BPM) has been extended to 

measure the beam’s second moment. Our initial design and measurements were reported 

earlier.5,6  

In principle, it is straight-forward to extract information about the beam distribution from 

the cavity fields induced by the beam. For instance, the zeroth order beam moment, proportional 

to the total charge, can be obtained from the monopole mode, the first order beam moments from 

the x- and y-dipole modes and utilizing the zeroth order beam moment, then the second beam 

moments from the quadrupole modes and the zeroth and the first order beam moments and so on. 

In practice, due to the so-called common-mode-problem, it is not easy to isolate the information 
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of each of the beam moment independently. The common-mode problems can be minimized by 

hybrid networks that subtract the fields of unwanted modes using symmetry. There is another 

limiting effect on beam moment measurement resolution. It is the signal to noise ratio. Signal to 

noise can be enhanced by utilizing a resonance cavity with multi-bunches. In some rf linac 

designs, each beam pulse consists of many bunches arriving at a well-defined rate. As a train of 

bunches goes through a cavity, the field of the mode is enhanced by resonance up to πLQ , the 

loaded quality factor divided by π, while the other cavity modes are off resonance.  

In this manuscript, a resonant cavity approach is presented for beam second moment 

measurement by employing a resonant cavity monitor operated at its quadrupole mode (TM220 

for a rectangular cavity). A resonant cavity (quad-cavity) can be designed, by symmetry, to have 

a mode that is exclusively excited by the beam’s quadrupole moment. The hybrid networks are a 

crucial component of this approach, and serve to minimize the parasitic common mode effects. 

The common mode effects can be further minimized by: (1) separating the other resonant mode 

frequencies away from the operating resonant mode; (2) maximizing the beam and the operating 

mode coupling by optimizing the cavity length along the beam pipe; and (3) utilizing symmetry 

in simple networks to cancel out parasitic modes. The monopole and dipole modes could be 

completely isolated via proper hybrid T connections, if perfect symmetry can be achieved.  

To demonstrate the resonant cavity approach for a beam monitor, a square or near-square 

rectangular cavity is chosen. In such a cavity, the lowest monopole mode and the “accelerating 

mode” is TM110, the lowest dipole modes or first two “position-sensitive” modes are TM210 and 

TM120, and the lowest quadrupole mode is TM220. The next higher modes are TM310 and TM130. 

It is interesting to note that, for a square cavity, the sum of the degenerate TM130 and TM310 
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modes yields a monopole-like field pattern and the difference of the modes yields a field pattern 

which has the nature of the normal quadrupole mode near the axis.  

More generally, the rectangular cavity modes TMλ, with zyx nnn ,,≡λ and nz=0,fall into 

three classes with respect to their field pattern symmetries. The symmetry planes of 

0=x and 0=y  are shown in Fig. 1, along with the cavity cross section dimensions, xL  and yL . 

The symmetry of the electric fields of the modes, 
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where the mode labels such as ‘monopole-like’ are given according to the leading field harmonic 

of the mode. Note that an odd index gives an even symmetry across the center and an even index 

gives an odd symmetry. The mode symmetry is preserved even with a circular beampipe 

attached, since the beam pipe does not break these symmetries. This symmetry property, along 

with proper networks, leads to a design of a cavity that is sensitive exclusively to the beam 

quadrupole moment.  

The hybrid tees, as depicted in Fig. 2, in principle, can completely eliminate the 

contributions from unwanted modes, all with even-even, odd-even, and even-odd symmetry of 

Ez. Then, having odd-odd symmetry, the lowest surviving quadrupole mode is TM220. The next 
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higher contributing TM modes, TM420 and TM240, are also quadrupole in nature, but resonate 

more than fifty percent higher in frequency than the TM220 mode.  

In order to maximize the measurement resolution of the beam quadrupole moment, 

maximum coupling between the beam and the lowest quadrupole cavity mode is required. 

Accelerator beams in focusing and defocusing (FODO) lattices generally have upright bi-

Gaussian distributions in the beamline coordinates. Consequently, the simplest rectangular 

quadrupole pickup cavity would be square, use the  2=xn  and 2=yn  mode, and be rotated by 

45° with respect to the beamline, resulting in a diamond configuration when looking into the 

beampipe as shown in Fig. 2. This TM220 mode would measure only the normal quadrupole 

beam moment (in the laboratory coordinates).  

 When the cavity orientation is rotated, the cavity coordinates shown in Fig. 1 and the 

laboratory coordinates do not coincide. Although cumbersome, for clarity, throughout this paper, 

we use ),,( zyx LL  as shown in Fig. 2 for the beam, or the linac coordinates, and reserve the x, 

y, and z coordinates for the cavity coordinates. Explicitly, the quadrupole beam moment we are 

interested in is as follows.  

 222
,

2
,

22
LL yxbLbLLL yxyx σσ −+><−><=>−<  (3) 

Here, Lxσ  and Lyσ  are rms-beam-sizes and < bLx , > and < bLy , > are beam positions, the first 

order beam moments, represented in the linac coordinate system. The angled brackets denote 

spatial the average over the charge distribution. It indicates that the quantity 22
LyLx σσ −  can be 

obtained from a single quadrupole-moment measurement if the beam position is known. A series 

of such monitors placed in a FODO lattice, and separated by an adequate machine phase 



 7

advance, permits one to deconvolve the beam Twiss parameters and rms emittance. In order to 

maximize the signal to noise level of the measurement, one can measure the signals near the 

magnets of the FODO lattice, where the beam has its largest aspect ratios. The quad-cavity 

system measures the beam emittance by selectively measuring the output voltage that is 

proportional to the beam moment >−< 22
LL yx . 

With this introduction, we present more details of the quad-cavity monitor design as 

follows. The basic emittance measurement concept is given in Sec. II, the basic concepts of 

cavity-beam interaction and beam rms size measurement are in Sec. III, computer simulations in 

Sec. IV, signal calibration in Sec. V, and fabrication considerations in Sec. VI. Then, in Sec. VII 

we present cold tests, tuning of a prototype cavity, and the beam tests, followed by a discussion 

in Sec. VIII. 

II. BEAM EMITTANCE MEASUREMENT VIA QUADRUPOLE MOMENT 

The beam emittance measurement with a quadrupole cavity relies on the beam optics 

considerations given in this section The beam emittance at a reference plane in an accelerator 

may be represented by an ellipsoid in the trace space, defined as IXX T =− )0()0()0( 1σ . The 

argument 0 indicates a reference plane, T
LLLL yyxxX )...,,,,( ′′=  is a n2 -dimensional 

column vector, and σ  is a nn 22 × symmetric matrix containing the beam parameters. For 

instance, 2
11 )( rmsxLσσ =  where rmsxL )(σ  is the root-mean-square in the Lx -spread of the 

beam. Considering only the beam optics in the space transverse to the beam-pipe, ignoring 

longitudinal beam coupling with the transverse, the beam parameter matrix has the following 

form. 
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When the LL yx −  coupling of the beam is negligible, the off-diagonal 2×2 block sub-matrices 

of the σ  matrix become zero. In this case, the σ  matrix is completely described by six beam 

parameters, 3433221211 ,,,, σσσσσ  and 44σ . Thus, six independent quadrupole signal 

measurement, 3311 σσ − , can determine the beam emittance in the LL yx −  space completely.  

For a matched beam, if the beam betatron function is periodic with respect to the chosen 

interval, one obtains 

 
)2/sin(1
)2/sin(1

33

11
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µ
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−
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2
3311 µ

εσσ L
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where )2/()2/sin( fL=µ , µ  is the betatron phase advance between the interval distance L, and 

f  the focal length of the FODO magnets.  

In order to obtain independent measurements it is better to have large values of 3311 σσ − , as 

long as the beam is not lost. Note that the σ11 – σ33  becomes infinite at πµ = , indicating beam 

loss. A value of 120≈µ  can be a good choice. Six consecutive measurements of quadrupole 

signals at or near the quadrupole magnets will provide six independent equations for the six 

emittance parameters. 

When there is some misalignment of the magnets, LL yx −  coupling will be present. In this case, 

the off-diagonal terms of the transfer matrix should be taken into account, requiring four 

additional measurements for full beam emittance determination. The four additional 
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measurements may be performed by adding four additional quad-cavity measurement systems, 

rotated by 45° around the beampipe, near the six measurements mentioned above. One can 

consider replacing four of the six systems by a double quad-cavity measurement system whose 

cavities are rotated 45° degrees to each other. In practice, however, one should align the magnets 

until the LL yx −  couplings become negligible, thus requiring only six measurements.  

With one measurement alone, beam rms size, the longer dimension of the cross-section, can be 

measured for an elongated cross-section beam. A quad cavity providing such a measurement is 

described  below. 

 III.  CAVITY-BEAM INTERACTION AND BEAM RMS SIZE MEASUREMENT 

The basic concept of the interaction between a beam and cavity mode is well described in 

Whittum and Kolomensky.4  

A.  Single bunch vs. multi-bunches  

The cavity voltage excited by the beams may be described as a driven, damped, simple harmonic 

oscillator. The drive term is proportional to the time-derivative of the interaction between the 

beam current Ib and the cavity fields and the damping is inversely proportional to the loaded 

quality factor of the mode λLQ . The derivation of the model is well described in reference [4]. 

As in Eq. (25) of the reference, the time-behavior of the voltage radiated from a beam-driven 

cavity mode is described as follows.7 
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This loaded quality factor QLλ describes the overall sharpness of the cavity mode’s 

frequency response. It is related to the unloaded quality factor Qwλ and the external quality factor 

Qeλ, which are the stored mode energy divided by the energy dissipated or emitted per rf cycle, 

respectively, through 

 
λλλ ewL QQQ

111
+= . (7) 

The subscript λ  refers to m, d and q for the monopole mode, the dipole mode, and the 

quadrupole mode, respectively, following their leading field harmonic. The quantity [R/Q], 

which is the shunt impedance divided by the unloaded quality factor, is a measure of beam 

coupling with the cavity fields.  Employing the accelerator convention R = (energy gain per unit 

charge)2/Pdis , or equivalently  disPVR /|~| 2= , using the peak synchronous cavity voltage, it has 

the well known relationship to the cavity voltage, 
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where λ,⊥rk  is the loss factor, and )2/(1 0ελ =U  is the normalized cavity mode energy. The 

factor ½ in the middle of Eq. (6) accounts for the fact that [R/Q] is defined using the peak 

voltage, while the voltage λV  in the circuit equation is the rms value. The tilde notation is used 

for variables in frequency space. 

Equation (6) is a differential equation which depends on only time, and is separable in the 

spatial and time variables. The time dependent part is essentially the same for all modes and thus 

it needs to be solved only once for one mode. Using Laplace’s method, we obtain the time 
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dependent solution of the equation after a beam has passed the cavity.8,9 The spatial dependence 

of the voltage response near the axis can be easily obtained from the field dependence in x and y. 

single Gaussian (in t) bunch 

For a single bunch with the Gaussian current, 
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where bQ  is bunch charge, bt  is bunch arrival time. The cavity voltage response has the 

following solution, 
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where the Heaviside step function defined as 
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The response of a point current, )()( bbb ttQtI −= δ ,  can be obtained by simply taking the limit 

of infinitesimal beam length in z (or t) in Eq.(9). 

 

 multi-bunch responses 

Multi-bunch responses can be obtained by summing over the single bunch responses at 

times delayed by the bunch interval τ . For a train of N-bunches, the amplitude of the sinusoidal 

voltage just after the nth bunch is,  

 ( ) ( ) ))exp(1/())exp(1(/ 0 ττλλ Γ−−Γ−−= ntVtV N
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      with τ)1(0 −+= nttn  for N1,2n ,,= ,  

and    

 ))(exp()()( NN
N

N
N tttVttV −Γ−=> λλ   for  Ntt > .   

Fig. 3 shows the voltage amplitude for 900 bunches, filling every potential bucket, when 

the mode frequency is at perfect resonance with the bunch frequency 424.110 =f GHz (upper 

curve), when it is mismatched by ) Q/(f= f Lλδ 20 = 7.6 MHz with λLQ = 750 (middle curve), 

and when it is mismatched by 2 fδ (bottom curve).  

The asymptotic voltage for infinitely many bunches is shown in Fig. 4 for 

RFRF ωωω λ 2.39.0 ≤≤ , where RFω  is the accelerator rf frequency at which the beam is 

bunched, 
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Approximating the asymptotic value around integer values as δωωλ += hRF/ , with h being the 

bunch separation in rf wavelength, we obtain that the output voltage of the resonant mode is 

enhanced at multiples of the fundamental resonance by the factor of )/( hQL πλ , a potentially 

large number, but decreasing with h. The enhancement of the desired signal, suppression of the 

unwanted signals, and practical fabrication issues such as tolerance determine the design 

specification. 



 13

B.  Analytic pillbox model 

A closed pillbox is a good starting point for resonance cavity design, since we know 

analytic solutions for all the resonance fields and frequencies.  

The cavity fields of TM modes, with cavity dimensions yx LL ,  and zL , were introduced 

in the Introduction. The electric fields, Eq.(1), can be expanded in terms of  1/ <<≡ xxx Lxnx πβ   

and 1/ <<≡ yyy Lyny πβ  near the origin. 
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Although there is a distinct difference between a closed pillbox and a cavity with a 

beampipe, and the cavity resonant mode fields and those of the synchronous harmonic have 

different expansions, we can associate each cavity mode with its dominant spatial dependence. In 

that, a closed pillbox calculation provides a good reference and starting point of our cavity 

design.  

With the electric field of a pillbox given in Eq. (1) and the remaining non-vanishing 

components of TM modes,   
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where ≈= − 2/1
000 )/( εµZ 377 Ohms, xxx Ln /πβ = , yy Ln /πβ = , and 22

yx βββλ += . 

Various important quantities  such as resonant frequencies, output powers, and shunt impedances 

can be estimated if cavity dimensions are given. In addition, the wall quality factor ( wQ ) can be 

obtained from )~/~)(2/(
221 ∫∫=− HdVHdSQw δ , where the skin-depth 

mGHzfm µµδ 2.1)(1.2 ≈≈  for OFE copper at 11.424 f = GHz.  

 

The cavity dimensions can be determined by the resonant frequency and the transit-time 

angle. The maximum transit factor occurs at transit angle 56.133=qθ , which leads to an axial 

cavity dimension of 0.9736 cm for the quadrupole mode. Together with the cross-section 

dimensions of the cavity whose TM220 mode resonates at 11.424 GHz, the cavity dimensions are 

determined to be: 

 incmLincmLL zyx 38330.09736.0,46110.17112.3 ===== . (13) 

Using the analytic electric and magnetic fields in Eqs. (1) and (12), useful quantities are 

evaluated for a 1 nC bunch traveling at yx =  in mm away from the axis. Table I shows these 

values: the resonant frequencies of the lowest cavity modes, their leading term in field 

harmonics, skin depths, the wall quality factors, kick factors ( λk ), [R/Q] values, field energy of 

the cavity mode ( λU = 2
bQk ×λ ), the peak power ( λλλλ ω ,/ eQUP = )  radiated out of the 

cavity from each of the modes, and the expected power of each mode filtered around the 

operating frequency, assuming the resonance response of each cavity mode is of Lorentzian 

shape,   
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Note that, when critically coupled, λλ ,, we QQ = . The filtered power around a frequency away 

from its resonant frequency can then be determined as follows.  
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The power filtered around a frequency far away from a resonant mode frequency is much smaller 

than its peak power. This power reduction due to being off-resonance is 4×10-8 for the dipole 

mode and 10-7 for the TM310+TM130 monopole-like mode when filtered around 11.424GHz.  

The analytic estimates in Table I compare well with the HFSS10 and the GdfdL 11 

simulations.  

C.  Beampipe effect on the resonant frequencies 

The effect of the beampipe on resonant frequencies has been investigated. For this study, 

the transverse dimensions of the cavity are fixed at 3.7113cm × 3.7113 cm and the radius of the 

beampipe is varied from 0 (closed pillbox), through 6.5 mm. Since the resonant frequencies 

depend only on the ratio of the beampipe size to the cavity dimensions, we present the results in 

terms of the ratio of the diameter to the cavity dimension, from 0 to 0.35. Fig. 5 shows the 

frequency variation. As the beampipe dimension is increased, the monopole frequencies increase, 

while the dipole and quadrupole frequencies decrease. If we consider the transition from pillbox 

to cavity with beampipe to proceed from a small perturbation of the cavity walls, the frequency 

trend can be understood from Slater’s perturbation theorem12. This states that a perturbation of a 
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cavity wall which increases the volume raises the resonant frequency if the perturbation is at a 

region of high electric field and lowers the frequency if it is at a region of predominantly 

magnetic field. The monopole frequencies have electric field on axis; the other modes have more 

magnetic field near the beampipe region. The frequency modification by the beampipe is found 

to be rather small for all modes, as shown in Fig. 5.  

Utilizing maximum available symmetry of the geometry, only 1/8 of the geometry needs 

to be modeled while varying boundary conditions on the symmetry planes as follows.  

squadrupoleforelectricyelectricx
dipolesxforelectricymagneticx
dipolesyformagneticyelectricx

monopolesformagneticymagneticx

;0;0
;0;0
;0;0

;0;0

==
−==
−==

==

 

z = 0 electric for all cases 

There are few things to note. In a square cavity, the TM210 and TM120 modes are 

degenerate. Therefore, any combination of TM210 and TM120 is also a solution. To be seen later, 

the quad-cavity is not perfectly square when the hybrid network waveguides are attached, and 

thus the dipole modes are no longer degenerate. The dipole modes are then the x- and y-dipole 

modes. The TM310 and TM130 are also degenerate in a square pillbox. The degeneracy is removed 

with a beampipe attached at the center. The two modes are TM310 ± TM130. The sum mode is a 

predominantly monopole, and the difference mode corresponds to the ‘normal’ quadrupole mode 

with its electric field being proportional to 22 yx − . As expected, the resonant frequency is 

increased with beampipe radius for the predominantly monopole modes (TM110, and the sum of 

TM310 and TM130), while the opposite occurres for the predominantly dipole modes (TM210 and 

TM120) and the quadrupole modes (TM220, and TM310-TM130).  
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D.  RMS beam-size measurement resolution based on a pillbox model 

The quality of the quad-cavity monitor ultimately depends on the measurement resolution 

of the quadrupole moment. A reasonable estimate can be made using a 3-D electromagnetic field 

solver without the beams. HFSS simulations were performed for a cavity with a beampipe 

attached to evaluate the similar quantities in Table I for the x-dipole, the quadrupole, and the 

monopole-like TM310+TM130 mode. The results are presented in Table II. Presented are the 

resonant frequencies, wQ , the synchronous integral and power dissipated through the walls, for 

chosen beam offsets ( )br , using the normalized fields by the code. The values of shunt 

impedance R and output power outP  are then evaluated for the Next Linear Collider (NLC) 

beams of 1 nC per bunch operating at 714 MHz (bunch current = 0.714 A) as follows. 

 
disP

VR
2|~|

=  

 RIP bout
2

2)1( β
β

+
=    where   bbb fQI = . (16) 

Here disoutwe PPQQ // =≡β , and bQ  and bf  are bunch charge and bunch frequency. Note 

that the shunt impedance is independent of normalization used in the simulation. The 

synchronous voltage integral and power dissipated to walls ( )disP are obtained from HFSS. 

In order to be resolved, the quadrupole signal must be greater than other parasitic signals 

filtered around the quadrupole frequency. The critical lengths that satisfy the condition are 

28 µm with respect to the TM110 signal, 0.4 µm with respect to the TM120 or TM210 signals, and 

120 µm with respect to the TM310+TM130 signal. Consequently, the quadrupole resolution is 

limited to x = y = 120 µm without any hybrid tee networks or the resonance enhancement by 
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multi-bunches. To enhance the rms-beam-size measurement resolution from 120 × 2  µm to 

1 µm, a reduction of ~ 910−  of the common mode power is required. One can eliminate the 

common mode effect completely via hybrid tee networks if the network and the cavity symmetry 

are perfect, though in practice a small error may exist. The resolution analysis presented here 

was obtained with a off-centered pencil beam in one cavity quadrant. For the xL
2-dependent 

quadrupole field, this is equivalent to a flat, centered, Gaussian distribution with rms beam size 

equal to the diagonal off-axis distance of the pencil beam. 

Another limit is detectability. In order to estimate the measurable rms-beam-size 

resolution, the measurable power ( )measurableP  above electronic noise is assumed to be 10−11 W, 

about 250 times the thermal noise. The thermal noise of electronic measurements with bandwidth 

of 10 MHz at room temperature is 4×10−14 W, which can be derived from the following formula:  

)()()/()( HzinbandwidthBKelvinTKelvinJoulekWPthermal = . With this measurable 

power, from  
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the quadrupole resolution is 6 µm for a single bunch. For multi-bunches in a single shot, due to 

resonance enhancement, the quadrupole output power can be enhanced by 2)( πLQ . Thus, an 

rms-beam-size as small as 0.2 µm might be measurable. Together with the common mode 

constraints, we conclude that the quadrupole resolution should be on the order of a micronmeter. 
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IV.  COMPUTER SIMULATION  

Based on the resonant cavity concept described in the previous sections, a specific design 

of a quad-cavity is presented here as an application for X-band accelerators operating at 

11.424 GHz. The diameter of the beam pipe attached to the quad-cavity was chosen to be 1 cm, 

large enough for an X-band linac. Note that the cut-off of the TE11 mode of this cylindrical 

beam-pipe corresponds to 17.6 GHz. The choice of loaded Q was determined by considering the 

following competing conditions: both the resonant enhancement and the tolerance requirement 

increase with increasing LqQ . A LqQ  value around 1000 is chosen, for which the FWHM of the 

resonant mode is 10 MHz.  

With these conditions, after detailed numerical simulations using the electromagnetic 

field-solver HFSS 10, an optimized quad-cavity design is obtained and is shown in Fig. 6. The 

hybrid network waveguides are attached to only two sides of the cavity. The x- and y- 

dimensions of the cavity were adjusted slightly so as to compensate for the field leakage through 

the irises. The design parameters are as follows. 

Beam pipe diameter = 1 cm 
Cavity axial dimension (Lz) = 0.97 cm 
Cavity transverse dimensions = 1.457’’ by 1.417’’    (18) 
Waveguide WR62 inner dimensions= 0.622’’ by 0.311’’ 
In order to study the time behavior of the beam and cavity interaction, the main 

components of the quad-cavity system were modeled with the GdfidL code.11 This model is the 

same as the 3-D figure in Fig. 6, except for the last hybrid network and the 90° bend waveguides.  

It includes the main cavity, the beampipe, and the two hybrid tees until just before they start 

bending. The model has two waveguide ports as indicated in the figure in addition to the 

beampipe ports. Numerical simulations were performed for a single bunch, modeled as a pencil 
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beam with a Gaussian shape in t, mm4c tz == σσ , for numerical resolution and with an offset 

mm0.5yx ==  in the cavity coordinates. The large bunch length reduces the magnitude of the 

output voltage via the exponential factor in Eq. (9). This factor is 0.67 for the operating resonant 

frequency, since 92.0≈tqσω . Thus the simulation voltage needs to be multiplied by 1.5 for 

much shorter bunches and the output power by 2.25.  

An off-centered bunch at mm0.5yx ==  generates the monopole, the dipole and 

quadrupole modes in the cavity. The three hybrid tee waveguide-networks in the design subtract 

the fields through the irises. The simulation model includes the first two hybrid T’s attached to 

the cavity, which provides a subtraction of the electric fields through the two irises on the cavity, 

eliminating the components from the monopoles and one of the dipoles. The results of the 

simulation are presented in Fig. 7. The first plot shows output voltage (V1) from one of the ports, 

port 1, which includes the quadrupole and one of the x- or y- dipole modes. Similarly, the other 

port voltage (V2) includes the quadrupole and the same dipole mode as in V1. By taking the 

difference of V1 and V2, we accomplish the effect of the last hybrid network that provides a 

subtraction of the fields, although this is not modeled. This difference signal V1-V2 is shown in 

the second plot of the figure. The external Q of the quadrupole mode can be obtained from the 

slope of the envelope of V1-V2, when plotted on a logarithmic scale. It is roughly 1000. The sum 

voltage (V1+V2), which is proportional to the dipole mode, survives after the first pair of 

networks, has a similar behavior as the first plot, and is not shown. If we had another pencil 

beam at mm0.5yx −==  to cancel the dipole moment, the sum voltage will indeed be zero 

except numerical noise. The second beam would just interchange V1 with -V2 and V2 with -V1. 

The sum signal of the two pencil beams would be 0V1)-(V2V2)-(V1 =+ , reflecting the true 

absence of a dipole moment for a symmetric centered beam.  
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The third plot in Fig. 7 shows the difference signal V1-V2 for 80 ns long pulse with about 

900 bunches filled in every potential bucket. The response of a pulse that contains a train of 

bunches can be obtained by superposing the port signals of a single bunch at delayed times, each 

delayed by the bunch intervals 0/1 f , where f0=11.424 GHz. The amplitude of the quad signal 

(V1-V2) increases monotonically with the number of bunches indicating a good resonance. If  

the bunch frequency is slightly mismatched with the cavity resonant frequency the quad-signals 

exhibit some modulation, as an extension of Fig. 7 would predict, and saturate at a reduced 

amplitude. This result is not presented. The amplitude of the multi-bunch difference signal 

shown in the third plot is about 180 times larger than that of a single-bunch. The value is 

somewhat smaller than the ideal maximum 240/ ≈πLqQ . This slight discrepancy may be due to 

finite length of bunch used in our numerical modeling, numerical inaccuracies, and slight 

resonant frequency error of the cavity.  The last plot shows the multi-bunch sum signal, 

(V1+V2), which is clearly non-resonating with the multi-bunches.  

Simulations at different beam locations (at mm0.5yx == , mm1yx == , and 

mm.5yx 1== ) verified that the difference-voltage increased quadratically with offset, while 

the sum-signal increased linearly with offset. 

The power spectra of the output voltages provide useful information. (See Fig. 8.) We 

show only the lowest waveguide mode results, since the next higher modes have frequencies 

above 16 GHz, and thus their contribution to the spectrum around 11.424 GHz is negligible. The 

output voltage V1 (top plot) of a port shows several significant frequencies. The other port has 

similar behavior, cannot be distinguished in the scale presented, and thus is not shown. The sum 

voltage V1+V2 (second plot) of the two ports has a peak at the dipole frequency, while the 

difference voltage V1-V2 (third plot) shows a peak at the quadrupole, 11.424 GHz, frequency. 
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With multi-bunches, the sum voltage (fourth plot) and the difference voltage (fifth plot) show a 

peak at 11.424 GHz. The fourth plot is the multi-bunch resonant enhancement of the non-zero 

component around 11.424 GHz of the dipole mode resonating at 8.848 GHz. Its enhancement 

factor is exactly the same as that of the quadrupole.  Therefore, resonant enhancement does not 

increase the common mode resolution. Rather, the resonance enhancement increases resolution 

with respect to the detectable power over noise.  

The area under each spectrum near the operating frequency is proportional to the output 

voltage around that frequency. (The vertical axis of all the spectrum plots is in units of 

HzWattPower /)( , up to a constant.) The quadrupole resolution can be estimated from the last 

two cases in the figure. When we magnify the spectrum near the quadrupole frequency the 

shapes of the spectra are similar to each other. From this information for a bunch at 

mm0.5yx == , we can estimate the location of a bunch where the output power from the 

quadrupole mode is similar to that from the dipole. This is roughly myx µ17≈= , which is 

equivalent to a bunch size of about mm µµ 30172 ≈× . 

Another limiting factor could be that the quadrupole signal itself could be too small to be 

detected above electronic noise. This analysis is the same as in Sec. IV. Assuming the 

measurable power ( )measurableP  above electronic noise is 10−11W, an rms-beam-size as small as 

0.2µm can be measurable. Therefore, it is likely that the common mode effect limits the 

quadrupole measurement resolution. Considering imperfections in the hybrid networks, a power 

reduction of the monopole and dipole modes through the networks down by a factor of 10−5 

(-50 dB) may be considered reasonable. This leads to a rms-beam-size resolution on the order of 

ten microns. 



 23

V.  QUADRUPOLE CAVITY CALIBRATION  

We have shown that the output voltage after the last hybrid T junction is from the TM220 

cavity mode only and that this mode couples with the beam quadrupole moment. Therefore, the 

voltage is proportional to the beam quadrupole-moment. 

 ( )222
,

2
, LL yxbLbLq yxV σσ −+−∝    in linac coordinates. (19) 

In an ideal situation the proportionality constant of the equation can be evaluated. In practice, we 

need to determine the coefficient experimentally by a calibration, to include all the practical 

effects of a real physical system in the beamline. 

The goal of this calibration is to determine the proportionality constant in the above 

equation. For a large number of beam pulses, the quad-output signal, when plotted as a function 

of xL, looks like the plot shown in Fig. 10 (a). The plots in Fig. 10 are generated numerically by 

varying beam positions. It illustrates what a typical run might generate. Each pulse which may 

contain a train of bunches is represented as a dot in the figure. Each pulse is considered as a rigid 

pencil moving parallel to the axis. The spread in xL is due to the beam xL-positions, and the 

vertical spread is due to the variation in beam yL-positions.  The vertical spread, however, is 

bounded by a parabola. This “bounding parabola”, consisting of pulses with yL,b=0, provides the 

coefficient of proportionality. Furthermore, the quad-signal where the parabola crosses the xL-

axis gives the vale of 22
LL yx σσ − . For a flat beam, the value is approximately the square of the 

rms-size in the larger dimension. Repeating the procedure using yL,b as the independent variable 

provides a crosscheck of the calibration factor. (See Fig. 10 (b).) 
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VI. FABRICATION CONSIDERATIONS 

Phase errors may be introduced by asymmetries due to imperfections in fabrication, and 

thermal expansions. A 0.001” error in one of the iris locations and sizes can modify the resonant 

frequency by over 10 MHz. Therefore, it is crucial to fabricate the cavity with great accuracy.  

Phase errors due to inaccuracies of the waveguide lengths are estimated not to be 

significant. Even when the two hybrid tee lengths differ by 120 microns, corresponding to an 

error of 1.6° for a signal of 11.424 GHz, only an insignificant amount of output power reduction 

is observed.  

Tolerance with temperature variation is estimated before fabrication. For a resonant mode 

whose loaded quality factor, LqQ ≈ 750, the 29.3% amplitude degradation level (-3dB) 

corresponds to )2/(1/ Lqqq Qff =δ  ≈ 6.7×10-4. For the quad-cavity dimensions, this level of 

sensitivity allows a variation of a cavity dimension of δa ≈ 25 µm (~0.001”), since 

qq ffaa // δδ −≈ . Using the thermal expansion coefficient of Cu of 16.5×10-6/K, we find that this 

level of sensitivity corresponds to an allowable change in temperature of δT ≈ 40°C. 

Machining and brazing errors are also estimated before fabrication. With conventional 

CNC machining some corners must generally be radiused. The errors in the frequency from this 

can be estimated using the variational method. For the quadrupole mode, the 0.0625” rounded 

corners, parallel to the beampipe, modify the cavity resonant frequency by on the order of 10−5fq. 

Similarly, 0.005” rounded corners, parallel to the cavity x- or y-axis, modify the cavity resonant 

frequency on the order of 10−5fq. Therefore, adjustment of the dimensions due to these errors was 

deemed unnecessary. 
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After these considerations, our quad-cavity system was fabricated. (See Fig. 9.) 

VII.  EXPERIMENTAL RESULTS 

A.  RF tests and cavity tuning 

The prototype cavity was designed and built with a push/pull mechanical impact tuning 

scheme.13 This allows fine adjustment of the resonance frequency by a slight, azimuthally 

symmetric deformation of the cavity wall around the beam pipe. Machining tolerances could thus 

be looser than would otherwise be required.         

Before final brazing of the hybrid network waveguides, rf tests were performed on the 

cavity with an HP8510 network analyzer, and the cavity resonance was fine tuned. With cavity 

fabrication specifications within 0.002” accuracy, the quadrupole resonance turned out to be 

11.4096 GHz, 14.4 MHz below our goal. By slight impact compressions of the cavity, the 

resonant frequency was raised to the desired value of 11.424 GHz, as shown in Fig. 11. 

B.  Beam tests 

The quad-cavity system was completely assembled as in Fig. 9, with the hybrid 

waveguide networks and an rf window for operation under vacuum. It was installed near the end 

of the beamline of the Next Linear Collider Test Accelerator (NLCTA) at the Stanford Linear 

Accelerator Center (SLAC). A waveguide-to-coax adaptor attached to the WR90 port and a low-

loss heliax cable connected the cavity to the rf monitoring system outside the accelerator 

enclosure.  There, the signal was down-mixed with an X-band reference signal through I-Q 

demodulators and digitized in a 1 gigasample/s digitizing scope to produce high-resolution phase 
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and amplitude signals for individual beam pulses. Due to experimental limitations in these initial 

beam tests, we did not have the opportunity to fully demonstrate the monitor’s capabilities and to 

characterize its resolution. Nevertheless, they did provide some useful results. 

In time structure, the NLCTA beam is a bunch train with every 11.424 GHz rf bucket 

filled. Beam tests of the quad-cavity system were performed with beam pulse currents ranging 

from 40 mA to 350 mA and beam pulse lengths ranging from several nanoseconds to 105 ns. 

Fig. 12 shows two examples of signal pulses. Even short pulses produced adequate signal. From 

the time constant of the exponentially decaying signal pulses, the loaded quality factor QL of the 

monitor can be calculated. On average, we measured QL = ωτ/2 ≈ 1,100, where ω is the angular 

frequency and τ the fitted e-folding time. This roughly agrees with an HFSS simulation including 

copper wall losses, which yielded QL = 1,008. 

We were able to probe the cavity field pattern by steering the beam transversely in xL and 

yL by means of nearby corrector magnets. The signal amplitude from an xL scan, with sign 

determined by the signal phase, is plotted in Fig. 13. The parabolic shape confirms that we are 

detecting the quadrupole mode excitation. Since we attempted to zero yL for this scan, the fact 

that the plot passes through zero twice could be indicative of a non-zero beam quadrupole 

moment (See Eq. (3)).  

Fig. 14 shows the variation of the signed cavity signal amplitude as the beam is moved 

over a 2-D grid of points in transverse coordinates xL and yL.  The nice saddle shape clearly 

indicates again that the monitor is sensitive to the quadrupole mode. The range of the scan is 

approximately 5 mm along either direction, though we have had to leave the axes in arbitrary 

units, proportional to the corrector currents, because an independent measure of the exact beam 

position at the cavity could not be reliably obtained.  The nearest BPM was about ten inches 
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away, and the beam was sharply focused by an upstream quadrupole magnet. An attempt to infer 

the local position from the readings of two downstream BPM’s using TRANSPORT matrices14,15 

from the NLCTA on-line model was unsuccessful, (it yielded a yL-range slightly exceeding the 

beampipe aperture), presumably because the model needed updating.  

In a subsequent run, only a shorter bunch train of a few nanoseconds was available, as the 

gun pulser was changed, and the beam was considerably larger near the cavity due to the 

removal of an upstream quadrupole magnet from the beam line. On the positive side, removal of 

the quadrupole magnet allowed us to better infer the beam position at the cavity by a linear 

trajectory between two BPM’s. The larger beam led to some loss of beam current due to scraping 

as we moved the beam around. To correct for loss, the cavity signal was scaled by the inverse of 

the transmitted current. The end points of position scans show also some deviation from linearity 

in BPM-measured position with step number (in corrector magnet current). Since the correctors 

do not saturate in this range and there are no sextupoles in the beamline, the deviation in BPM 

readings was interpreted as an artifact of the current loss, as the clipping of one side of the 

current distribution moved the effective center of charge to the other side.  A constant position 

change per step was thus imposed on the data based on a linear fit to the central points. 

Fig. 15 shows the corrected signal as functions of corrected xL- and yL-position. Parabolic 

fits to this data determined the electrical center of the cavity to be approximately at xL=0.501 mm 

and yL=0.151 mm. Repeated measurement  of xL suggested a precision of about 40 µm. In 

general, a 2 D scan is required to determine the center, in case of slight cavity rotation. Such a 

scan over a grid in xL and yL was also attempted in this run, but was beset with problems, 

including excessive beam jitter and drift during the scan and a yL-range not straddling the 
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electrical center. Nevertheless, to illustrate the use of such data, we fit the quadrupole signal to a 

quadratic function, 

 ( ) ( ) ( )  *where-x-x *  y)(x, 222
,

2
, LL yxbLyLbLLq aVyaVV σσ −≡⎟

⎠
⎞⎜

⎝
⎛ −+= , (20) 

and found bL,x  = 0.4773 mm, bLy ,  = -0.5318 mm, a = 0.4657 mm-2 and V* = 0.7221.  

The xL-center is within 0.024 mm of the value from the linear scan (whereas the yL-center 

value is unreliable due to one-sidedness of the data range). The beam quadrupole moment 

calculated from this fit is ==− aV
LL yx /*

22 σσ ~1.551 mm2.  The rms deviation of the data from 

the 2-D fit is 0.2728.  Dividing this deviation by the quadratic coefficient a = 0.4657 and taking 

the square root, one obtains 0.765 mm as a measure of the 1-D resolution under these non-ideal 

conditions.  

A major contributor to this large resolution is jitter in the beam position. We also 

measured the variation of the quadrupole signal for fixed corrector settings (and presumably 

fixed beam position) and found it had an rms variation of 6.3% of the average signal value of 

0.2533 for 50 shots.  Again, dividing by a and taking the square root, one obtains 0.18 mm as a 

measure of the beam jitter for this particular position. Taking into account only the rms fit 

deviation above, one would have =− 22
LL yx σσ  1.551 ± 0.586 mm2  or =− 22

LL yx σσ 1.22 ± 0.24 

mm. But the size of the beam jitter is already about 0.18 mm, and not independent of the rms fit 

deviation. Obviously, the data discussed here do not represent the beam size resolution 

ultimately achievable with this cavity. 

While the above scanning experiment helps us understand its function, the intended use 

of this device is as a single shot quadrupole moment monitor. For such application, it must first 
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be accurately calibrated with a small, well characterized beam or a wire test. In operation the 

position of the measured beam relative to the known electrical center of the cavity must be 

accurately determined by independent BPM’s (and preferably zeroed), as well as its charge and 

bunch length. 

VIII.  DISCUSSION 

 As a figure of merit, we estimate from simulations that the quad-cavity system can 

measure a flat beam-size of much less than 100 microns and that it is robust enough against 

coupling of monopole and dipole modes to the quadrupole mode signal for small perturbations of 

the geometrical symmetry. At present, however, we do not have an experimental beam-test 

verification of the resolution. The beam tests discussed above provided, at most, qualitative 

results. Due to the limitations of beam diagnostics and beam conditions at the NLCTA, the 

possible beam size resolution obtainable was limited to only hundreds of microns. This 

measurement, therefore, does not represent the ultimate resolution achievable with this device. In 

the future, more calibration and beam tests may be performed if a suitable beam line should 

become available and there is interest in deploying this new beam diagnostic tool. 

One of the main difficulties of the measurement was not being able to obtain the beam 

position at the quad-cavity location accurately. The quadrupole measurement would be much 

more accurate if the transverse beam position were measured at the same place. This observation 

led us to the development of an integrated multi-cell cavity beam monitor including position 

measurement 1. 
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The work reported in this paper was carried out as an application for the NLC beams. 

Recently, the NLC project has been subsumed into the ILC (International Linear 

Collider) project. However, the general concept and design presented in this paper may be 

directly applicable to beams in linear accelerators other than the NLC, such as those of the ILC.   
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Table I. Zeroth-order cavity design, based on closed pillbox. Values are evaluated for the cavity 

dimensions in Eq.(13), with 1 nC, single-bunch off centered at x(mm) and y(mm). The y-dipole 

case is the same as that of x-dipole except x is replaced by y, and is not shown. The normal 

quadrupole mode, (TM310-TM130) / 2, is not shown. 

 

 

 
TM110 

monopole 

TM210 (or 
TM120)       

x-dipole 

TM220 
quadrupole 

yx =  

(TM310 +TM130) 
/ 2  

monopole 

Resonant frequency      
)2/( πωλ  in GHz 5.7120 9.0315 11.4240 

12.772 

Leading field harmonic constant x xy constant 

Skin depth ( µ ) 0.88  0.7 0.62 0.59 

wQ  (for OFE Copper) 7.3 × 103 9.1 × 103 1.0 ×  104 1.1 ×  104 

λk   (V/pC) 1.4  0.034 2x   0.00082  22 yx  0.87  

]/[ QR  (ohms)
 159  2.41 2x  0.0454  22 yx  44  

λU  ( Jµ )  1.4  0.034 2x  0.00082  22 yx  0.87  

λP (Watt)  7 0.21 2x   0.0057  22 yx  6.5 

λP  (Watt)  filtered 
around 11.424 GHz 

3.3× 10-8 9.1 × 10-9 2x  0.0057  22 yx  1.2 × 10-6 
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Table II.   Values of resonant frequency, wall Q, shunt impedance ( R )  and power output ( outP ) 

for the 1 mm-beam offset  for the NLC beams of 1nC per bunch operating at 714 MHz.  

 

        x-Dipole 

(TM210 or TM120) 

xb=1mm, yb=0 

Quadrupole 

(TM220) 

mmyx bb 2/1==  

Monopole-like 

(TM310+TM130)

xb=yb=0 

λf  8.955 GHz 11.427 GHz 13.147 GHz 

λwQ  8200 9800 11000 

 R  [ohm] 19500   103  2.83×105 

      outP  [W]  (assumed  

we QQ / =0.111) 

895  4.69  1.30×104  
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FIGURE CAPTIONS 
 

FIG. 1. Cavity cross-section and cavity coordinates (x, y, and z). The z-axis is along the 

beampipe.  

 

FIG. 2. Cavity orientation in the beamline and the linac coordinates ),,( zyx LL . The z-axis is 

along the beampipe. 

 

FIG. 3.  Amplitudes of cavity voltage at resonance (top), and off resonance by  ) Q/(f= f Lλδ 20  

and by 2 fδ  (bottom).  

 

FIG. 4.  Asymptotic cavity voltage amplitudes. 

 

FIG. 5. Beampipe size effect on the cavity resonant frequency. Shown are for the lowest modes: 

TM110 (solid circle), the two degenerate TM210 and TM120 modes (triangle),  TM220 (diamond), 

and the next two higher modes. The two highest frequency modes, degenerate in a closed 

pillbox, decouple with a beampipe: TM310+TM130 (open circle) and TM310-TM130 (cross). 

 

FIG. 6. Full rf structure geometry with 3-T combining network to reject non-quadrupole modes 

(left figure).  Ez-Contour plot of the 11.424 GHz TM220 mode (right figure) 

 

FIG. 7.  Output voltages of 1 nC-bunch off-axis at x = y = 0.05 cm, modeled by GdfidL: V1 of 

one bunch (top); V1-V2 of one bunch (second plot); V1-V2 for 80 ns pulse (third plot); and 

V1+V2 for 80 ns pulse (bottom). 
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FIG. 8.  Fourier spectrum of the output voltages of 1 nC-bunch off-axis at x = y = 0.05 cm, 

modeled by GdfidL: Fourier spectrum of one bunch V1 (top); Fourier spectrum of one bunch 

V1+V2 (second plot); and Fourier spectrum of one bunch V1-V2 (third plot). Then multi-bunch 

results are shown for bunches operating at 11.424 GHz: Fourier spectrum of V1+V2 over 900 

bunches   (fourth plot); and Fourier spectrum of V1-V2 over 900 bunches (bottom). 

 

FIG. 9.  (top figure) A fully assembled emittance measurement quad-cavity system including an 

rf window (shown) and co-ax adaptor (not shown) and (bottom figure) the cavity with coupled T 

arms before brazing on top cover. 

 

FIG. 10. Quad-cavity signals of many beam pulses projected on the x-axis for calibration (left 

figure) and quad-cavity signals of many beam pulses projected on the y-axis for calibration (right 

figure). 

 

FIG. 11. The S12 signals between the waveguide port and a probe in the beampipe before (right 

peak) and after (left peak) fine tuning the cavity to 11.424 GHz. 

 

FIG. 12. Cavity signal responses (arbitrary units) to a) a 105 ns beam pulse and b) a 15 ns beam 

pulse.  

 

FIG. 13.  Response as a function of beam position. 
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FIG. 14.  2-D surface and contour plots of the cavity response as a function of xL and yL corrector 

step (arbitrary units, linear with position). 

 

FIG. 15.   Signal (arbitrary units) versus corrected position and fit for a) an xL-scan and b)  a yL-

scan. 
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