260 research outputs found

    Proof of a three-loop relation between the Regge limits of four-point amplitudes in N=4 SYM and N=8 supergravity

    Full text link
    A previously proposed all-loop-orders relation between the Regge limits of four-point amplitudes of N=4 supersymmetric Yang-Mills theory and N=8 supergravity is established at the three-loop level. We show that the Regge limit of known expressions for the amplitudes obtained using generalized unitarity simplifies in both cases to a (modified) sum over three-loop ladder and crossed-ladder scalar diagrams. This in turn is consistent with the result obtained using the eikonal representation of the four-point gravity amplitude. A possible exact three-loop relation between four-point amplitudes is also considered.Comment: 30 pages, 7 figure

    Toward a script theory of guidance in computer-supported collaborative learning

    Get PDF
    This article presents an outline of a script theory of guidance for computer-supported collaborative learning (CSCL). With its four types of components of internal and external scripts (play, scene, role, and scriptlet) and seven principles, this theory addresses the question how CSCL practices are shaped by dynamically re-configured internal collaboration scripts of the participating learners. Furthermore, it explains how internal collaboration scripts develop through participation in CSCL practices. It emphasizes the importance of active application of subject matter knowledge in CSCL practices, and it prioritizes transactive over non-transactive forms of knowledge application in order to facilitate learning. Further, the theory explains how external collaboration scripts modify CSCL practices and how they influence the development of internal collaboration scripts. The principles specify an optimal scaffolding level for external collaboration scripts and allow for the formulation of hypotheses about the fading of external collaboration scripts. Finally, the article points towards conceptual challenges and future research questions

    Functional disruption of α4 integrin mobilizes bone marrow–derived endothelial progenitors and augments ischemic neovascularization

    Get PDF
    The cell surface receptor α4 integrin plays a critical role in the homing, engraftment, and maintenance of hematopoietic progenitor cells (HPCs) in the bone marrow (BM). Down-regulation or functional blockade of α4 integrin or its ligand vascular cell adhesion molecule-1 mobilizes long-term HPCs. We investigated the role of α4 integrin in the mobilization and homing of BM endothelial progenitor cells (EPCs). EPCs with endothelial colony-forming activity in the BM are exclusively α4 integrin–expressing cells. In vivo, a single dose of anti–α4 integrin antibody resulted in increased circulating EPC counts for 3 d. In hindlimb ischemia and myocardial infarction, systemically administered anti–α4 integrin antibody increased recruitment and incorporation of BM EPCs in newly formed vasculature and improved functional blood flow recovery and tissue preservation. Interestingly, BM EPCs that had been preblocked with anti–α4 integrin ex vivo or collected from α4 integrin–deficient mice incorporated as well as control cells into the neovasculature in ischemic sites, suggesting that α4 integrin may be dispensable or play a redundant role in EPC homing to ischemic tissue. These data indicate that functional disruption of α4 integrin may represent a potential angiogenic therapy for ischemic disease by increasing the available circulating supply of EPCs

    Evaluating Hammermill Tip Speed, Air Assist, and Screen Hole Diameter on Ground Corn Characteristics

    Get PDF
    Whole yellow dent #2 corn was ground using two 43 mm Andritz hammermills (Model: 4330-6, Andritz Feed & Biofuel, Muncy, PA; JBS Live Pork LLC Feed Mill, Fremont, IA). Both mills discharged to a shared plenum where samples were collected via a sample port. Each mill was equipped with 72 hammers and 300 HP motors on a variable frequency drive (VFD). Corn was ground on 3 separate days to create replication and treatments were randomized within replication. Treatments were arranged in a 3 × 3 × 3 factorial design with 3 tip speeds (12,383, 16,323, and 20,263 ft/min); 3 screen hole diameters (6/64, 10/64, and 16/64 in.); and 3 air assist system fan RPM’s (60, 80, and 100% of fan motor load). Samples of each treatment were collected and analyzed for moisture, particle size, and flowability characteristics. Particle size analysis was completed using a 13-sieve stack with the inclusion of sieve agitators and flow agent. Flowability characteristics were evaluated using a composite flow index (CFI), which includes percent compressibility, angle of repose (AoR), and critical orifice diameter (COD). Data were analyzed as a 3 × 3 × 3 factorial using the PROC GLIMMIX procedure of SAS with grinding run as the experimental unit and sample collection day as a blocking factor. There were no 3-way interactions for screen hole diameter × hammer tip speed × air flow for the geometric mean diameter (dgw) or any flowability characteristics of ground corn. There was a 3-way interaction for particle size standard deviation (Sgw), (linear screen hole diameter × linear hammer tip speed × linear air flow, P = 0.029). There was a linear screen hole diameter × linear hammer tip speed interaction (P = 0.001) for dgw. When tip speed increased from 12,383 to 20,263 ft/min, the rate of decrease in dgw was greater as screen hole diameter increased from 6/64 to 16/64 in. An interaction of screen hole diameter and hammer tip speed (linear × linear, P = 0.040) was also observed for the CFI. The CFI results increased with increasing screen hole diameter when corn was ground using a hammer tip speed of 12,383 ft/min but no differences were observed as tip speed increased to 16,323 and 20,263 ft/min. An interaction of screen hole diameter and hammer tip speed (quadratic × quadratic, P = 0.001) was observed for mill motor load. Mill motor load decreased as screen hole diameter increased from 6/64 in. to 16/64 in., but increased as hammer tip speed was increased with the most significant reductions being observed as tip speed increased from 12,383 ft/min to 16,323 ft/min on the 6/64 in. screen. In conclusion, hammer tip speed and air flow rate are viable options for adjusting ground material characteristics when grinding using a hammermill, alongside the traditional screen variations. Along with the range of particle sizes capable of being produced, an increased level of accuracy can also be achieved with hammer tip speed and air flow adjustments with minimal down time necessary for screen changes

    Rapid Detection of Infestation of Apple Fruits by the Peach Fruit Moth, Carposina sasakii Matsumura, Larvae Using a 0.2-T Dedicated Magnetic Resonance Imaging Apparatus

    Get PDF
    Infestation of harvested apple fruits by the peach fruit moth (Carposina sasakii Matsumura) was studied using a dedicated magnetic resonance imaging (MRI) apparatus equipped with a 0.2-T permanent magnet. Infested holes on the three-dimensional (3-D) images tracked ecological movements of peach fruit moth larvae within the food fruits, and thus in their natural habitat. Sensitive short solenoid coil and surface coil detectors were devised to shorten measurement times. The short solenoid coil detected infestation holes at a rate of 6.4 s per image by the single-slice 2-D measurement. The multi-slice 2-D measurement provided six slice images of a fruit within 2 min taken by the two detectors. These results indicate that the 0.2-T MRI apparatus allows one to distinguish sound fruits from infested ones, and also as a means for plant protection and the preservation of natural ecological systems in foreign trade

    Geographic distribution at subspecies resolution level: closely related Rhodopirellula species in European coastal sediments.

    Get PDF
    Members of the marine genus Rhodopirellula are attached living bacteria and studies based on cultured Rhodopirellula strains suggested that three closely related species R. baltica, 'R. europaea' and 'R. islandica' have a limited geographic distribution in Europe. To address this hypothesis, we developed a nested PCR for a single gene copy detection of a partial acetyl CoA synthetase (acsA) from intertidal sediments collected all around Europe. Furthermore, we performed growth experiments in a range of temperature, salinity and light conditions. A combination of Basic Local Alignment Search Tool (BLAST) and Minimum Entropy Decomposition (MED) was used to analyze the sequences with the aim to explore the geographical distribution of the species and subspecies. MED has been mainly used for the analysis of the 16S rRNA gene and here we propose a protocol for the analysis of protein-coding genes taking into account the degeneracy of the codons and a possible overestimation of functional diversity. The high-resolution analysis revealed differences in the intraspecies community structure in different geographic regions. However, we found all three species present in all regions sampled and in agreement with growth experiments we demonstrated that Rhodopirellula species do not have a limited geographic distribution in Europe

    On the Principles of Differentiable Quantum Programming Languages

    Full text link
    Variational Quantum Circuits (VQCs), or the so-called quantum neural-networks, are predicted to be one of the most important near-term quantum applications, not only because of their similar promises as classical neural-networks, but also because of their feasibility on near-term noisy intermediate-size quantum (NISQ) machines. The need for gradient information in the training procedure of VQC applications has stimulated the development of auto-differentiation techniques for quantum circuits. We propose the first formalization of this technique, not only in the context of quantum circuits but also for imperative quantum programs (e.g., with controls), inspired by the success of differentiable programming languages in classical machine learning. In particular, we overcome a few unique difficulties caused by exotic quantum features (such as quantum no-cloning) and provide a rigorous formulation of differentiation applied to bounded-loop imperative quantum programs, its code-transformation rules, as well as a sound logic to reason about their correctness. Moreover, we have implemented our code transformation in OCaml and demonstrated the resource-efficiency of our scheme both analytically and empirically. We also conduct a case study of training a VQC instance with controls, which shows the advantage of our scheme over existing auto-differentiation for quantum circuits without controls.Comment: Codes are available at https://github.com/LibertasSpZ/adcompil

    Going Deeper: Metagenome of a Hadopelagic Microbial Community

    Get PDF
    The paucity of sequence data from pelagic deep-ocean microbial assemblages has severely restricted molecular exploration of the largest biome on Earth. In this study, an analysis is presented of a large-scale 454-pyrosequencing metagenomic dataset from a hadopelagic environment from 6,000 m depth within the Puerto Rico Trench (PRT). A total of 145 Mbp of assembled sequence data was generated and compared to two pelagic deep ocean metagenomes and two representative surface seawater datasets from the Sargasso Sea. In a number of instances, all three deep metagenomes displayed similar trends, but were most magnified in the PRT, including enrichment in functions for two-component signal transduction mechanisms and transcriptional regulation. Overrepresented transporters in the PRT metagenome included outer membrane porins, diverse cation transporters, and di- and tri-carboxylate transporters that matched well with the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. The most dramatic adaptational feature of the PRT microbes appears to be heavy metal resistance, as reflected in the large numbers of transporters present for their removal. As a complement to the metagenome approach, single-cell genomic techniques were utilized to generate partial whole-genome sequence data from four uncultivated cells from members of the dominant phyla within the PRT, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes and Planctomycetes. The single-cell sequence data provided genomic context for many of the highly abundant functional attributes identified from the PRT metagenome, as well as recruiting heavily the PRT metagenomic sequence data compared to 172 available reference marine genomes. Through these multifaceted sequence approaches, new insights have been provided into the unique functional attributes present in microbes residing in a deeper layer of the ocean far removed from the more productive sun-drenched zones above

    HIV-1 Vpr Triggers Mitochondrial Destruction by Impairing Mfn2-Mediated ER-Mitochondria Interaction

    Get PDF
    Human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) has been shown to induce host cell death by increasing the permeability of mitochondrial outer membrane (MOM). The mechanism underlying the damage to the mitochondria by Vpr, however, is not clearly illustrated. In this study, Vpr that is introduced, via transient transfection or lentivirus infection, into the human embryonic kidney cell line HEK293, human CD4+ T lymphoblast cell line SupT1, or human primary CD4+ T cells serves as the model system to study the molecular mechanism of Vpr-mediated HIV-1 pathogenesis. The results show that Vpr injures MOM and causes a loss in membrane potential (MMP) by posttranscriptionally reducing the expression of mitofusin 2 (Mfn2) via VprBP-DDB1-CUL4A ubiquitin ligase complex, gradually weakening MOM, and increasing mitochondrial deformation. Vpr also markedly decreases cytoplasmic levels of dynamin-related protein 1 (DRP1) and increases bulging in mitochondria-associated membranes (MAM), the specific regions of endoplasmic reticulum (ER) which form physical contacts with the mitochondria. Overexpression of Mfn2 and DRP1 significantly decreased the loss of MMP and apoptotic cell death caused by Vpr. Furthermore, by employing time-lapse confocal fluorescence microscopy, we identify the transport of Vpr protein from the ER, via MAM to the mitochondria. Taken together, our results suggest that Vpr-mediated cellular damage may occur on an alternative protein transport pathway from the ER, via MAM to the mitochondria, which are modulated by Mfn2 and DRP1
    corecore