86,175 research outputs found

    Fabrication of graphite/epoxy cases for orbit insertion motors

    Get PDF
    The fabrication procedures are described for filament-wound rocket motor cases, approximately 26.25 inches long by 25.50 inches diameter, utilizing graphite fibers. The process utilized prepreg tape which consists of Fortafil 4-R fibers in the E-759 epoxy resin matrix. This fabrication effect demonstrated an ability to fabricate high quality graphite/epoxy rocket motor cases in the 26.25 inch by 25.50 inch size range

    Antimisting kerosene

    Get PDF
    The antimisting additive ((FM-9) was tested in terms of its propulsion systems performance. The effect of the additive on engine operation was evaluated, operating problems were identified, the adaptability of engines to antimisting kerosene was assessed, and the potential viability of this fuel for use in present and future fan jet engines was determined

    Star/horizon simulator used to test space guidance system

    Get PDF
    Star/horizon simulator is used for alignment and optical plus photoelectric tests of the sextant for the Apollo guidance and navigation system optical unit assembly. The unit is basically a refractive collimator with a two inch objective lens system and a twenty-four inch focal length

    The use of AntiMisting Kerosene (AMK) in turbojet engines

    Get PDF
    The effect of antimisting kerosene (AMK) flow characteristics on fan jet engines and the impact of degradation requirements on the fuel system was evaluated. It was determined from the present program that AMK fuel cannot be used without predegradation, although some degradation occurs throughout the fuel feed system, expecially in the fuel pumps. There is a tendency toward FM-9 AMK additive agglomeration and gel formation when the liquid flows at a critical velocity through very small passages. The data indicate this phenomenon to be a function of the degree of degradation, the passage size, the differential pressure, the fluid temperature, and the accumulated flow time. Additionally, test results indicate that the long term cumulative effects of this phenomenon may require more degradation than the theoretical requirement determined from short term tests

    Conical valve plug Patent

    Get PDF
    Conical valve plug for use with reactive cryogenic fluid

    Numerical dissipation and the bottleneck effect in simulations of compressible isotropic turbulence

    Full text link
    The piece-wise parabolic method (PPM) is applied to simulations of forced isotropic turbulence with Mach numbers 0.1...1\sim 0.1... 1. The equation of state is dominated by the Fermi pressure of an electron-degenerate fluid. The dissipation in these simulations is of purely numerical origin. For the dimensionless mean rate of dissipation, we find values in agreement with known results from mostly incompressible turbulence simulations. The calculation of a Smagorinsky length corresponding to the rate of numerical dissipation supports the notion of the PPM supplying an implicit subgrid scale model. In the turbulence energy spectra of various flow realisations, we find the so-called bottleneck phenomenon, i.e., a flattening of the spectrum function near the wavenumber of maximal dissipation. The shape of the bottleneck peak in the compensated spectrum functions is comparable to what is found in turbulence simulations with hyperviscosity. Although the bottleneck effect reduces the range of nearly inertial length scales considerably, we are able to estimate the value of the Kolmogorov constant. For steady turbulence with a balance between energy injection and dissipation, it appears that C1.7C\approx 1.7. However, a smaller value is found in the case of transonic turbulence with a large fraction of compressive components in the driving force. Moreover, we discuss length scales related to the dissipation, in particular, an effective numerical length scale Δeff\Delta_{\mathrm{eff}}, which can be regarded as the characteristic smoothing length of the implicit filter associated with the PPM.Comment: 23 pages, 7 figures. Revised version accepted by Comp. Fluids. Not all figures included due to size restriction. Complete PDF available at http://www.astro.uni-wuerzburg.de/%7Eschmidt/Paper/NumDiss_CF.pd

    From the Editor: Mental Well-Being and Illness

    Get PDF
    corecore