875 research outputs found

    Quantum Cryptography Based on the Time--Energy Uncertainty Relation

    Get PDF
    A new cryptosystem based on the fundamental time--energy uncertainty relation is proposed. Such a cryptosystem can be implemented with both correlated photon pairs and single photon states.Comment: 5 pages, LaTex, no figure

    Entanglement Creation Using Quantum Interrogation

    Get PDF
    We present some applications of high efficiency quantum interrogation ("interaction free measurement") for the creation of entangled states of separate atoms and of separate photons. The quantum interrogation of a quantum object in a superposition of object-in and object-out leaves the object and probe in an entangled state. The probe can then be further entangled with other objects in subsequent quantum interrogations. By then projecting out those cases were the probe is left in a particular final state, the quantum objects can themselves be left in various entangled states. In this way we show how to generate two-, three-, and higher qubit entanglement between atoms and between photons. The effect of finite efficiency for the quantum interrogation is delineated for the various schemes.Comment: 7 pages, 13 figures, Submitted to PR

    Contribution of Long Wavelength Gravitational Waves to the CMB Anisotropy

    Full text link
    We present an in depth discussion of the production of gravitational waves from an inflationary phase that could have occurred in the early universe, giving derivations for the resulting spectrum and energy density. We also consider the large-scale anisotropy in the cosmic microwave background radiation coming from these waves. Assuming that the observed quadrupole anisotropy comes mostly from gravitational waves (consistent with the predictions of a flat spectrum of scalar density perturbations and the measured dipole anisotropy) we describe in detail how to derive a value for the scale of inflation of (1.55)×1016(1.5-5)\times 10^{16}GeV, which is at a particularly interesting scale for particle physics. This upper limit corresponds to a 95\% confidence level upper limit on the scale of inflation assuming only that the quadrupole anisotropy from gravitational waves is not cancelled by another source. Direct detection of gravitational waves produced by inflation near this scale will have to wait for the next generation of detectors.Comment: (LaTeX 16 pages), 2 figures not included, YCTP-P16-9

    Nuclear Inelastic X-Ray Scattering of FeO to 48 GPa

    Full text link
    The partial density of vibrational states has been measured for Fe in compressed FeO (w\"ustite) using nuclear resonant inelastic x-ray scattering. Substantial changes have been observed in the overall shape of the density of states close to the magnetic transiton around 20 GPa from the paramagnetic (low pressure) to the antiferromagnetic (high pressure) state. Our data indicate a substantial softening of the aggregate sound velocities far below the transition, starting between 5 and 10 GPa. This is consistent with recent radial x-ray diffraction measurements of the elastic constants in FeO. The results indicate that strong magnetoelastic coupling in FeO is the driving force behind the changes in the phonon spectrum of FeO.Comment: 4 pages, 4 figure

    Skewness in the Cosmic Microwave Background Anisotropy from Inflationary Gravity Wave Background

    Get PDF
    In the context of inflationary scenarios, the observed large angle anisotropy of the Cosmic Microwave Background (CMB) temperature is believed to probe the primordial metric perturbations from inflation. Although the perturbations from inflation are expected to be gaussian random fields, there remains the possibility that nonlinear processes at later epochs induce ``secondary'' non-gaussian features in the corresponding CMB anisotropy maps. The non-gaussianity induced by nonlinear gravitational instability of scalar (density) perturbations has been investigated in existing literature. In this paper, we highlight another source of non-gaussianity arising out of higher order scattering of CMB photons off the metric perturbations. We provide a simple and elegant formalism for deriving the CMB temperature fluctuations arising due to the Sachs-Wolfe effect beyond the linear order. In particular, we derive the expression for the second order CMB temperature fluctuations. The multiple scattering effect pointed out in this paper leads to the possibility that tensor metric perturbation, i.e., gravity waves (GW) which do not exhibit gravitational instability can still contribute to the skewness in the CMB anisotropy maps. We find that in a flat Ω=1\Omega =1 universe, the skewness in CMB contributed by gravity waves via multiple scattering effect is comparable to that from the gravitational instability of scalar perturbations for equal contribution of the gravity waves and scalar perturbations to the total rms CMB anisotropy. The secondary skewness is found to be smaller than the cosmic variance leading to the conclusion that inflationary scenarios do predict that the observed CMB anisotropy should be statistically consistent with a gaussian random distribution.Comment: 10 pages, Latex (uses revtex), 1 postscript figure included. Accepted for publication in Physical Review

    Error threshold in optimal coding, numerical criteria and classes of universalities for complexity

    Full text link
    The free energy of the Random Energy Model at the transition point between ferromagnetic and spin glass phases is calculated. At this point, equivalent to the decoding error threshold in optimal codes, free energy has finite size corrections proportional to the square root of the number of degrees. The response of the magnetization to the ferromagnetic couplings is maximal at the values of magnetization equal to half. We give several criteria of complexity and define different universality classes. According to our classification, at the lowest class of complexity are random graph, Markov Models and Hidden Markov Models. At the next level is Sherrington-Kirkpatrick spin glass, connected with neuron-network models. On a higher level are critical theories, spin glass phase of Random Energy Model, percolation, self organized criticality (SOC). The top level class involves HOT design, error threshold in optimal coding, language, and, maybe, financial market. Alive systems are also related with the last class. A concept of anti-resonance is suggested for the complex systems.Comment: 17 page

    A built-in scale in the initial spectrum of density perturbations: evidence from cluster and CMB data

    Get PDF
    We calculate temperature anisotropies of the cosmic microwave background (CMB) for several initial power spectra of density perturbations with a built-in scale suggested by recent optical data on the spatial distribution of rich clusters of galaxies. Using cosmological models with different values of spectral index, baryon fraction, Hubble constant and cosmological constant, we compare the calculated radiation power spectrum with the CMB temperature anisotropies measured by the Saskatoon experiment. We show that spectra with a sharp peak at 120 h^{-1} Mpc are in agreement with the Saskatoon data. The combined evidence from cluster and CMB data favours the presence of a peak and a subsequent break in the initial matter power spectrum. Such feature is similar to the prediction of an inflationary model where an inflaton field is evolving through a kink in the potential.Comment: LaTex style, 9 pages, 3 PostScript figures embedded, accepted by J. Exper. Theor. Phy

    Towards a resolution of the proton form factor problem: new electron and positron scattering data

    Full text link
    There is a significant discrepancy between the values of the proton electric form factor, GEpG_E^p, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of GEpG_E^p from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide range in virtual photon polarization (ε\varepsilon) and momentum transfer (Q2Q^2) simultaneously, as well as to cancel luminosity-related systematic errors. The cross section ratio increases with decreasing ε\varepsilon at Q2=1.45 GeV2Q^2 = 1.45 \text{ GeV}^2. This measurement is consistent with the size of the form factor discrepancy at Q21.75Q^2\approx 1.75 GeV2^2 and with hadronic calculations including nucleon and Δ\Delta intermediate states, which have been shown to resolve the discrepancy up to 232-3 GeV2^2.Comment: 6 pages, 4 figures, submitted to PR

    The roles and values of wild foods in agricultural systems

    Get PDF
    Almost every ecosystem has been amended so that plants and animals can be used as food, fibre, fodder, medicines, traps and weapons. Historically, wild plants and animals were sole dietary components for hunter–gatherer and forager cultures. Today, they remain key to many agricultural communities. The mean use of wild foods by agricultural and forager communities in 22 countries of Asia and Africa (36 studies) is 90–100 species per location. Aggregate country estimates can reach 300–800 species (e.g. India, Ethiopia, Kenya). The mean use of wild species is 120 per community for indigenous communities in both industrialized and developing countries. Many of these wild foods are actively managed, suggesting there is a false dichotomy around ideas of the agricultural and the wild: hunter–gatherers and foragers farm and manage their environments, and cultivators use many wild plants and animals. Yet, provision of and access to these sources of food may be declining as natural habitats come under increasing pressure from development, conservation-exclusions and agricultural expansion. Despite their value, wild foods are excluded from official statistics on economic values of natural resources. It is clear that wild plants and animals continue to form a significant proportion of the global food basket, and while a variety of social and ecological drivers are acting to reduce wild food use, their importance may be set to grow as pressures on agricultural productivity increase.</jats:p

    A cosmological constant from degenerate vacua

    Get PDF
    Under the hypothesis that the cosmological constant vanishes in the true ground state with lowest possible energy density, we argue that the observed small but finite vacuum-like energy density can be explained if we consider a theory with two or more degenerate perturbative vacua, which are unstable due to quantum tunneling, and if we still live in one of such states. An example is given making use of the topological vacua in non-Abelian gauge theories.Comment: 8 pages, no figur
    corecore