427 research outputs found

    Terahertz frequency standard based on three-photon coherent population trapping

    Full text link
    A scheme for a THz frequency standard based on three-photon coherent population trapping in stored ions is proposed. Assuming the propagation directions of the three lasers obey the phase matching condition, we show that stability of few 10−14^{-14} at one second can be reached with a precision limited by power broadening to 10−1110^{-11} in the less favorable case. The referenced THz signal can be propagated over long distances, the useful information being carried by the relative frequency of the three optical photons.Comment: article soumis a PRL le 21 mars 2007, accepte le 10 mai, version 2 (24/05/2007

    Feynman path-integral treatment of the BEC-impurity polaron

    Full text link
    The description of an impurity atom in a Bose-Einstein condensate can be cast in the form of Frohlich's polaron Hamiltonian, where the Bogoliubov excitations play the role of the phonons. An expression for the corresponding polaronic coupling strength is derived, relating the coupling strength to the scattering lengths, the trap size and the number of Bose condensed atoms. This allows to identify several approaches to reach the strong-coupling limit for the quantum gas polarons, whereas this limit was hitherto experimentally inaccessible in solids. We apply Feynman's path-integral method to calculate for all coupling strengths the polaronic shift in the free energy and the increase in the effective mass. The effect of temperature on these quantities is included in the description. We find similarities to the acoustic polaron results and indications of a transition between free polarons and self-trapped polarons. The prospects, based on the current theory, of investigating the polaron physics with ultracold gases are discussed for lithium atoms in a sodium condensate.Comment: 13 pages, 3 figure

    On the modification of the Efimov spectrum in a finite cubic box

    Full text link
    Three particles with large scattering length display a universal spectrum of three-body bound states called "Efimov trimers''. We calculate the modification of the Efimov trimers of three identical bosons in a finite cubic box and compute the dependence of their energies on the box size using effective field theory. Previous calculations for positive scattering length that were perturbative in the finite volume energy shift are extended to arbitrarily large shifts and negative scattering lengths. The renormalization of the effective field theory in the finite volume is explicitly verified. Moreover, we investigate the effects of partial wave mixing and study the behavior of shallow trimers near the dimer energy. Finally, we provide numerical evidence for universal scaling of the finite volume corrections.Comment: 21 pages, 8 figures, published versio

    Observation of an Efimov spectrum in an atomic system

    Full text link
    In 1970 V. Efimov predicted a puzzling quantum-mechanical effect that is still of great interest today. He found that three particles subjected to a resonant pairwise interaction can join into an infinite number of loosely bound states even though each particle pair cannot bind. Interestingly, the properties of these aggregates, such as the peculiar geometric scaling of their energy spectrum, are universal, i.e. independent of the microscopic details of their components. Despite an extensive search in many different physical systems, including atoms, molecules and nuclei, the characteristic spectrum of Efimov trimer states still eludes observation. Here we report on the discovery of two bound trimer states of potassium atoms very close to the Efimov scenario, which we reveal by studying three-particle collisions in an ultracold gas. Our observation provides the first evidence of an Efimov spectrum and allows a direct test of its scaling behaviour, shedding new light onto the physics of few-body systems.Comment: 10 pages, 3 figures, 1 tabl

    Study protocol of the TIRED study:A randomised controlled trial comparing either graded exercise therapy for severe fatigue or cognitive behaviour therapy with usual care in patients with incurable cancer

    Get PDF
    Background: Fatigue is a common and debilitating symptom for patients with incurable cancer receiving systemic treatment with palliative intent. There is evidence that non-pharmacological interventions such as graded exercise therapy (GET) or cognitive behaviour therapy (CBT) reduce cancer-related fatigue in disease-free cancer patients and in patients receiving treatment with curative intent. These interventions may also result in a reduction of fatigue in patients receiving treatment with palliative intent, by improving physical fitness (GET) or changing fatigue-related cognitions and behaviour (CBT). The primary aim of our study is to assess the efficacy of GET or CBT compared to usual care (UC) in reducing fatigue in patients with incurable cancer. Methods: The TIRED study is a multicentre three-armed randomised controlled trial (RCT) for incurable cancer patients receiving systemic treatment with palliative intent. Participants will be randomised to GET, CBT, or UC. In addition to UC, the GET group will participate in a 12-week supervised exercise programme. The CBT group will receive a 12-week CBT intervention in addition to UC. Primary and secondary outcome measures will be assessed at baseline, post-intervention (14 weeks), and at follow-up assessments (18 and 26 weeks post-randomisation). The primary outcome measure is fatigue severity (Checklist Individual Strength subscale fatigue severity). Secondary outcome measures are fatigue (EORTC-QLQ-C30 subscale fatigue), functional impairments (Sickness Impact Profile total score, EORTC-QLQ-C30 subscale emotional functioning, subscale physical functioning) and quality of life (EORTC-QLQ-C30 subscale QoL). Outcomes at 14 weeks (primary endpoint) of either treatment arm will be compared to those of UC participants. In addition, outcomes at 18 and 26 weeks (follow-up assessments) of either treatment arm will be compared to those of UC participants. Discussion: To our knowledge, the TIRED study is the first RCT investigating the efficacy of GET and CBT on reducing fatigue during treatment with palliative intent in incurable cancer patients. The results of this study will provide information about the possibility and efficacy of GET and CBT for severely fatigued incurable cancer patients

    Universality in Four-Boson Systems

    Full text link
    We report recent advances on the study of universal weakly bound four-boson states from the solutions of the Faddeev-Yakubovsky equations with zero-range two-body interactions. In particular, we present the correlation between the energies of successive tetramers between two neighbor Efimov trimers and compare it to recent finite range potential model calculations. We provide further results on the large momentum structure of the tetramer wave function, where the four-body scale, introduced in the regularization procedure of the bound state equations in momentum space, is clearly manifested. The results we are presenting confirm a previous conjecture on a four-body scaling behavior, which is independent of the three-body one. We show that the correlation between the positions of two successive resonant four-boson recombination peaks are consistent with recent data, as well as with recent calculations close to the unitary limit. Systematic deviations suggest the relevance of range corrections.Comment: Accepted for publication in special issue of Few-Body Systems devoted to the Sixth Workshop on the Critical Stability of Quantum Few-Body Systems, October 2011, Erice, Sicily, Ital

    Development and internal validation of a machine learning prediction model for low back pain non-recovery in patients with an acute episode consulting a physiotherapist in primary care

    Get PDF
    BACKGROUND: While low back pain occurs in nearly everybody and is the leading cause of disability worldwide, we lack instruments to accurately predict persistence of acute low back pain. We aimed to develop and internally validate a machine learning model predicting non-recovery in acute low back pain and to compare this with current practice and 'traditional' prediction modeling. METHODS: Prognostic cohort-study in primary care physiotherapy. Patients (n = 247) with acute low back pain (≤ one month) consulting physiotherapists were included. Candidate predictors were assessed by questionnaire at baseline and (to capture early recovery) after one and two weeks. Primary outcome was non-recovery after three months, defined as at least mild pain (Numeric Rating Scale > 2/10). Machine learning models to predict non-recovery were developed and internally validated, and compared with two current practices in physiotherapy (STarT Back tool and physiotherapists' expectation) and 'traditional' logistic regression analysis. RESULTS: Forty-seven percent of the participants did not recover at three months. The best performing machine learning model showed acceptable predictive performance (area under the curve: 0.66). Although this was no better than a'traditional' logistic regression model, it outperformed current practice. CONCLUSIONS: We developed two prognostic models containing partially different predictors, with acceptable performance for predicting (non-)recovery in patients with acute LBP, which was better than current practice. Our prognostic models have the potential of integration in a clinical decision support system to facilitate data-driven, personalized treatment of acute low back pain, but needs external validation first

    Search for Fractional Charges Produced in Heavy-Ion Collisions at 1.9 GeV/nucleon

    Get PDF
    An experiment was performed to capture fractionally charged particles produced in heavy-ion collisions and to concentrate them in samples suitable for analysis by various techniques. Two of the samples so produced have been searched, with use of an automated version of Millikan\u27s oil-drop apparatus. The beam was 56Fe at 1.9 GeV/nucleon, incident on a lead target. Less than one fractional charge per 1.0× 104 Fe-Pb collisions was found to be produced, and, with further assumptions, less than one per 2.0× 106 collisions
    • …
    corecore