4,107 research outputs found

    CZF does not have the Existence Property

    Full text link
    Constructive theories usually have interesting metamathematical properties where explicit witnesses can be extracted from proofs of existential sentences. For relational theories, probably the most natural of these is the existence property, EP, sometimes referred to as the set existence property. This states that whenever (\exists x)\phi(x) is provable, there is a formula \chi(x) such that (\exists ! x)\phi(x) \wedge \chi(x) is provable. It has been known since the 80's that EP holds for some intuitionistic set theories and yet fails for IZF. Despite this, it has remained open until now whether EP holds for the most well known constructive set theory, CZF. In this paper we show that EP fails for CZF

    On the normal modes of weak colloidal gels

    Get PDF
    The normal modes and relaxation rates of weak colloidal gels are investigated in computations employing different models of the hydrodynamic interactions between colloids. The eigenspectrum is computed for freely draining, Rotne-Prager-Yamakawa and Accelerated Stokesian Dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing the gel. The spatial structure of the normal modes suggests that measures of collectivity and energy dissipation in the gels are fundamentally altered by long-ranged hydrodynamic interactions, while hydrodynamic lubrication affects only the relaxation rates of short wavelength modes. Models accounting for long-ranged hydrodynamic interactions exhibit a microscopic relaxation rate for each normal mode, λ\lambda that scales as λ∼l−2\lambda\sim l^{-2}, where ll is the spatial correlation length of the mode. For the freely draining approximation, λ∼lγ\lambda\sim l^\gamma, where γ\gamma varies between 3 and 2 with increasing ϕ\phi. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations show that the stress decay as measured by the time-dependent shear modulus matches the normal mode predictions and the phenomenological model. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels

    Unifying Cubical Models of Univalent Type Theory

    Get PDF
    We present a new constructive model of univalent type theory based on cubical sets. Unlike prior work on cubical models, ours depends neither on diagonal cofibrations nor connections. This is made possible by weakening the notion of fibration from the cartesian cubical set model, so that it is not necessary to assume that the diagonal on the interval is a cofibration. We have formally verified in Agda that these fibrations are closed under the type formers of cubical type theory and that the model satisfies the univalence axiom. By applying the construction in the presence of diagonal cofibrations or connections and reversals, we recover the existing cartesian and De Morgan cubical set models as special cases. Generalizing earlier work of Sattler for cubical sets with connections, we also obtain a Quillen model structure

    Anisotropic diffusion in confined colloidal dispersions: The evanescent diffusivity

    Get PDF
    We employ an analogy to traditional dynamic light scattering to describe the inhomogeneous and anisotropic diffusion of colloid particles near a solid boundary measured via evanescent wave dynamic light scattering. Following this approach, we generate new expressions for the short-time self- and collective diffusivities of colloidal dispersions with arbitrary volume fraction. We use these expressions in combination with accelerated Stokesian dynamics simulations to calculate the diffusivities in the limit of large and small scattering wave numbers for evanescent penetration depths ranging from four particle radii to one-fifth of a particle radius and volume fractions from 10% to 40%. We show that at high volume fractions, and larger penetration depths, the boundaries have little effect on the dynamics of the suspension parallel to the wall since, to a first approximation, the boundary acts hydrodynamically much as another nearby particle. However, near and normal to the wall, the diffusivity shows a strong dependence on penetration depth for all volume fractions. This is due to the lubrication interactions between the particles and the boundary as the particle moves relative to the wall. These results are novel and comprehensive with respect to the range of penetration depth and volume fraction and provide a complete determination of the effect of hydrodynamic interactions on colloidal diffusion adjacent to a rigid boundary

    Particle motion between parallel walls: Hydrodynamics and simulation

    Get PDF
    The low-Reynolds-number motion of a single spherical particle between parallel walls is determined from the exact reflection of the velocity field generated by multipoles of the force density on the particle’s surface. A grand mobility tensor is constructed and couples these force multipoles to moments of the velocity field in the fluid surrounding the particle. Every element of the grand mobility tensor is a finite, ordered sum of inverse powers of the distance between the walls. These new expressions are used in a set of Stokesian dynamics simulations to calculate the translational and rotational velocities of a particle settling between parallel walls and the Brownian drift force on a particle diffusing between the walls. The Einstein correction to the Newtonian viscosity of a dilute suspension that accounts for the change in stress distribution due to the presence of the channel walls is determined. It is proposed how the method and results can be extended to computations involving many particles and periodic simulations of suspensions in confined geometries

    Simulation of hydrodynamically interacting particles near a no-slip boundary

    Get PDF
    The dynamics of spherical particles near a single plane wall are computed using an extension of the Stokesian dynamics method that includes long-range many-body and pairwise lubrication interactions between the spheres and the wall in Stokes flow. Extra care is taken to ensure that the mobility and resistance tensors are symmetric, positive, and definite—something which is ineluctable for particles in low-Reynolds-number flows. We discuss why two previous simulation methods for particles near a plane wall, one using multipole expansions and the other using the Rotne-Prager tensor, fail to produce symmetric resistance and mobility tensors. Additionally, we offer some insight on how the Stokesian dynamics paradigm might be extended to study the dynamics of particles in any confining geometry

    An analysis of short haul air passenger demand, volume 2

    Get PDF
    Several demand models for short haul air travel are proposed and calibrated on pooled data. The models are designed to predict demand and analyze some of the motivating phenomena behind demand generation. In particular, an attempt is made to include the effects of competing modes and of alternate destinations. The results support three conclusions: (1) the auto mode is the air mode's major competitor; (2) trip time is an overriding factor in intermodal competition, with air fare at its present level appearing unimportant to the typical short haul air traveler; and (3) distance appears to underly several demand generating phenomena, and therefore, must be considered very carefully to any intercity demand model. It may be the cause of the wide range of fare elasticities reported by researchers over the past 15 years. A behavioral demand model is proposed and calibrated. It combines the travel generating effects of income and population, the effects of modal split, the sensitivity of travel to price and time, and the effect of alternative destinations satisfying the trip purpose
    • …
    corecore