12 research outputs found

    Infiltrative microgliosis: activation and long-distance migration of subependymal microglia following periventricular insults

    Get PDF
    BACKGROUND: Subventricular microglia (SVMs) are positioned at the interface of the cerebrospinal fluid and brain parenchyma and may play a role in periventricular inflammatory reactions. However, SVMs have not been previously investigated in detail due to the lack of a specific methodology for their study exclusive of deeper parenchymal microglia. METHODS: We have developed and characterized a novel model for the investigation of subventricular microglial reactions in mice using intracerebroventricular (ICV) injection of high-dose rhodamine dyes. Dynamic studies using timelapse confocal microscopy in situ complemented the histopathological analysis. RESULTS: We demonstrate that high-dose ICV rhodamine dye injection resulted in selective uptake by the ependyma and ependymal death within hours. Phagocytosis of ependymal debris by activated SVMs was evident by 1d as demonstrated by the appearance of rhodamine-positive SVMs. In the absence of further manipulation, labelled SVMs remained in the subventricular space. However, these cells exhibited the ability to migrate several hundred microns into the parenchyma towards a deafferentation injury of the hippocampus. This "infiltrative microgliosis" was verified in situ using timelapse confocal microscopy. Finally, supporting the disease relevance of this event, the triad of ependymal cell death, SVM activation, and infiltrative microgliosis was recapitulated by a single ICV injection of HIV-1 tat protein. CONCLUSIONS: Subependymal microglia exhibit robust activation and migration in periventricular inflammatory responses. Further study of this population of microglia may provide insight into neurological diseases with tendencies to involve the ventricular system and periventricular tissues

    The Vascular Basement Membrane as “Soil” in Brain Metastasis

    Get PDF
    Brain-specific homing and direct interactions with the neural substance are prominent hypotheses for brain metastasis formation and a modern manifestation of Paget's “seed and soil” concept. However, there is little direct evidence for this “neurotropic” growth in vivo. In contrast, many experimental studies have anecdotally noted the propensity of metastatic cells to grow along the exterior of pre-existing vessels of the CNS, a process termed vascular cooption. These observations suggest the “soil” for malignant cells in the CNS may well be vascular, rather than neuronal. We used in vivo experimental models of brain metastasis and analysis of human clinical specimens to test this hypothesis. Indeed, over 95% of early micrometastases examined demonstrated vascular cooption with little evidence for isolated neurotropic growth. This vessel interaction was adhesive in nature implicating the vascular basement membrane (VBM) as the active substrate for tumor cell growth in the brain. Accordingly, VBM promoted adhesion and invasion of malignant cells and was sufficient for tumor growth prior to any evidence of angiogenesis. Blockade or loss of the β1 integrin subunit in tumor cells prevented adhesion to VBM and attenuated metastasis establishment and growth in vivo. Our data establishes a new understanding of CNS metastasis formation and identifies the neurovasculature as the critical partner for such growth. Further, we have elucidated the mechanism of vascular cooption for the first time. These findings may help inform the design of effective molecular therapies for patients with fatal CNS malignancies

    Gene Expression Profile Identifies Tyrosine Kinase c-Met as a Targetable Mediator of Antiangiogenic Therapy Resistance

    Full text link
    PURPOSE: To identify mediators of glioblastoma anti-angiogenic therapy resistance and target these mediators in xenografts. EXPERIMENTAL DESIGN: We performed microarray analysis comparing bevacizumab-resistant glioblastomas (BRGs) to pre-treatment tumors from the same patients. We established novel xenograft models of anti-angiogenic therapy resistance to target candidate resistance mediator(s). RESULTS: BRG microarray analysis revealed upregulation versus pre-treatment of receptor tyrosine kinase c-Met, which underwent further investigation because of its prior biologic plausibility as a bevacizumab resistance mediator. BRGs exhibited increased hypoxia versus pre-treatment in a manner correlating with their c-Met upregulation, increased c-Met phosphorylation, and increased phosphorylation of c-Met-activated focal adhesion kinase (FAK) and STAT3. We developed two novel xenograft models of anti-angiogenic therapy resistance. In the first model, serial bevacizumab treatment of an initially responsive xenograft generated a xenograft with acquired bevacizumab resistance, which exhibited upregulated c-Met expression versus pre-treatment. In the second model, a BRG-derived xenograft maintained refractoriness to the MRI tumor vasculature alterations and survival-promoting effects of bevacizumab. Growth of this BRG-derived xenograft was inhibited by a c-Met inhibitor. Transducing these xenograft cells with c-Met shRNA inhibited their invasion and survival in hypoxia, disrupted their mesenchymal morphology, and converted them from bevacizumab-resistant to bevacizumab-responsive. Engineering bevacizumab-responsive cells to express constitutively active c-Met caused these cells to form bevacizumab-resistant xenografts. CONCLUSION: These findings support the role of c-Met in survival in hypoxia and invasion, features associated with anti-angiogenic therapy resistance; and growth and therapeutic resistance of xenografts resistant to anti-angiogenic therapy. Therapeutically targeting c-Met could prevent or overcome anti-angiogenic therapy resistance

    β1 Integrin: Critical Path to Antiangiogenic Therapy Resistance and Beyond

    No full text
    Angiogenesis is an important tissue-level program supporting the growth of highly aggressive cancers and early-stage metastases. However, rapid emergence of resistance to antiangiogenic therapies, such as bevacizumab, greatly limits the clinical utility of these promising approaches. The mechanisms of resistance to antiangiogenic therapy remain incompletely understood. The tumor microenvironment has been demonstrated to be a source of broad therapeutic resistance in multiple cancers. Much of the interaction between the cells comprising a tumor and their microenvironment is driven by integrins. Notably, signaling downstream of integrins in tumor cells promotes fundamental programs vital to aggressive cancer biology, including proliferation, growth, invasion, and survival signaling. These functions then can contribute to malignant phenotypes, including metastasis, therapy resistance, epithelial-to-mesenchymal transition, and angiogenesis. Accordingly, we found β1 integrin to be functionally upregulated in tumor specimens from patients after bevacizumab failure and in xenograft models of bevacizumab resistance. Inhibition of β1 in tumor cells with stable gene knockdown or treatment with OS2966, a neutralizing β1 integrin monoclonal antibody, attenuated aggressive tumor phenotypes in vitro and blocked growth of bevacizumab-resistant tumor xenografts in vivo. Thus, β1 integrins promote resistance to antiangiogenic therapy through potentiation of multiple malignant programs facilitated by interactions with the tumor microenvironment. The elucidation of this mechanism creates an outstanding opportunity for improving patient outcomes in cancer

    β1 Integrin Targeting Potentiates Antiangiogenic Therapy and Inhibits the Growth of Bevacizumab-Resistant Glioblastoma

    No full text
    Antiangiogenic therapies like bevacizumab offer promise for cancer treatment, but acquired resistance, which often includes an aggressive mesenchymal phenotype, can limit the use of these agents. Upregulation of β1 integrin (ITGB1) occurs in some bevacizumab-resistant glioblastomas (BRG) whereby, mediating tumor-microenvironment interactions, we hypothesized that it may mediate a mesenchymal-type resistance to antiangiogenic therapy. Immunostaining analyses of β1 integrin and its downstream effector kinase FAK revealed upregulation in 75% and 86% of BRGs, respectively, compared with pretreatment paired specimens. Furthermore, flow cytometry revealed eight-fold more β1 integrin in primary BRG cells compared with cells from bevacizumab-naïve glioblastomas (BNG). Fluorescence recovery after photobleaching of cells engineered to express a β1-GFP fusion protein indicated that the mobile β1 integrin fraction was doubled, and half-life of β1 integrin turnover in focal adhesions was reduced markedly in BRG cells compared with bevacizumab-responsive glioblastoma multiforme cells. Hypoxia, which was increased with acquisition of bevacizumab resistance, was associated with increased β1 integrin expression in cultured BNG cells. BRGs displayed an aggressive mesenchymal-like phenotype in vitro. We found that growth of BRG xenograft tumors was attenuated by the β1 antibody, OS2966, allowing a 20-fold dose reduction of bevacizumab per cycle in this model. Intracranial delivery of OS2966 through osmotic pumps over 28 days increased tumor cell apoptosis, decreased tumor cell invasiveness, and blunted the mesenchymal morphology of tumor cells. We concluded that β1 integrin upregulation in BRGs likely reflects an onset of hypoxia caused by antiangiogenic therapy, and that β1 inhibition is well tolerated in vivo as a tractable strategy to disrupt resistance to this therapy

    Fractional laser ablation for the targeted cutaneous delivery of an anti-CD29 monoclonal antibody - OS2966

    No full text
    Monoclonal antibodies targeting cytokines are administered parenterally for the systemic treatment of severe psoriasis. However, systemic exposure to the biologic increases the risk of side-effects including immunosuppression, whereas only a small fraction of the active molecules actually reaches the target organ, the skin. This preclinical study examines the feasibility of delivering a humanized anti-CD29 monoclonal antibody (OS2966) topically to skin using minimally-invasive fractional laser ablation. This approach would enable the targeted use of a biologic for the treatment of recalcitrant psoriatic plaques in patients with less widespread disease while minimizing the risk of systemic exposure. First, the effect of a wide range of laser poration conditions on skin permeation and deposition of OS2966 was tested in vitro to determine optimal microporation parameters. Subsequently, confocal laser scanning microscopy was employed to visualize the distribution of fluorescently-labelled OS2966 in skin. The results demonstrated that delivery of OS2966 into and across skin was feasible. Above fluences of 35.1 J/cm2, skin deposition and permeation were statistically superior to passive delivery reaching values up to 3.7 ± 1.2 µg/cm2 at the most aggressive condition. Selective targeting of the skin was also possible since ≥70% of the OS2966 was delivered locally to the skin. Although nanogramme quantities were able to permeate across skin, these amounts were orders of magnitude lower than levels seen following subcutaneous or intravenous injection and would result in minimal systemic exposure in vivo. The diffusion of fluorescently-labelled OS2966 into the skin surrounding the pores was clearly higher than in intact skin and demonstrated the feasibility of delivering the antibody at least as deep as the dermo-epithelial junction, a critical border region where inflammatory cells cross to promote disease progression. These preliminary results confirm that fractional laser ablation can be used for the cutaneous delivery of OS2966 and now preclinical/clinical studies are required to demonstrate therapeutic efficacy
    corecore