5,046 research outputs found
Marginally unstable Holmboe modes
Marginally unstable Holmboe modes for smooth density and velocity profiles
are studied. For a large family of flows and stratification that exhibit
Holmboe instability, we show that the modes with phase velocity equal to the
maximum or the minimum velocity of the shear are marginally unstable. This
allows us to determine the critical value of the control parameter R
(expressing the ratio of the velocity variation length scale to the density
variation length scale) that Holmboe instability appears R=2. We then examine
systems for which the parameter R is very close to this critical value. For
this case we derive an analytical expression for the dispersion relation of the
complex phase speed c(k) in the unstable region. The growth rate and the width
of the region of unstable wave numbers has a very strong (exponential)
dependence on the deviation of R from the critical value. Two specific examples
are examined and the implications of the results are discussed.Comment: Submitted to Physics of Fluid
Algorithms to Compute the Lyndon Array
We first describe three algorithms for computing the Lyndon array that have
been suggested in the literature, but for which no structured exposition has
been given. Two of these algorithms execute in quadratic time in the worst
case, the third achieves linear time, but at the expense of prior computation
of both the suffix array and the inverse suffix array of x. We then go on to
describe two variants of a new algorithm that avoids prior computation of
global data structures and executes in worst-case n log n time. Experimental
evidence suggests that all but one of these five algorithms require only linear
execution time in practice, with the two new algorithms faster by a small
factor. We conjecture that there exists a fast and worst-case linear-time
algorithm to compute the Lyndon array that is also elementary (making no use of
global data structures such as the suffix array)
Glider measurements of overturning in a Kelvin-Helmholtz billow train
The prospects for glider-based measurement of turbulence statistics are assessed using direct numerical simulation data representing breaking Kelvin-Helmholtz (KH) billows in a stratified, parallel shear flow. Transects tilted upstream against the shear tend to produce overestimates of overturning; those tilted with the shear produce underestimates. Low-angle transects can produce illusory overturning as the braid between the KH billows is crossed. Statistical features of the bias in displacement scales are related to geometrical aspects of KH billows. Results are interpreted in the context of a hypothetical effort to characterize overturning in a strongly sheared current (e.g. the Equatorial Undercurrent) using nonvertical profiles
Stratified shear flow instabilities at large Richardson numbers
Numerical simulations of stratified shear flow instabilities are performed in
two dimensions in the Boussinesq limit. The density variation length scale is
chosen to be four times smaller than the velocity variation length scale so
that Holmboe or Kelvin-Helmholtz unstable modes are present depending on the
choice of the global Richardson number Ri. Three different values of Ri were
examined Ri =0.2, 2, 20. The flows for the three examined values are all
unstable due to different modes namely: the Kelvin-Helmholtz mode for Ri=0.2,
the first Holmboe mode for Ri=2, and the second Holmboe mode for Ri=20 that has
been discovered recently and it is the first time that it is examined in the
non-linear stage. It is found that the amplitude of the velocity perturbation
of the second Holmboe mode at the non-linear stage is smaller but comparable to
first Holmboe mode. The increase of the potential energy however due to the
second Holmboe modes is greater than that of the first mode. The
Kelvin-Helmholtz mode is larger by two orders of magnitude in kinetic energy
than the Holmboe modes and about ten times larger in potential energy than the
Holmboe modes. The results in this paper suggest that although mixing is
suppressed at large Richardson numbers it is not negligible, and turbulent
mixing processes in strongly stratified environments can not be excluded.Comment: Submitted to Physics of Fluid
Acquired resistance to anti-PD1 therapy: checkmate to checkpoint blockade?
Editorial summary Anti-programmed cell death 1 (PD1) immunotherapies are among the most effective anti-cancer immunotherapies available; however, a large number of patients present with or develop resistance to them. Unfortunately, very little is known regarding the mechanisms of resistance to such therapies. A recent study sought to identify mutations associated with resistance to anti-PD1 therapy. Results from this study demonstrated that mutations which affected the sensitivity of tumor cells to T-cell-derived interferons, and mutations limiting tumor-cell antigen presentation, could cause acquired resistance. These findings have significant implications for understanding the mechanisms by which anti-PD1 therapies exert their efficacy, comprehending why and how some patients acquire resistance over time, and ultimately guiding the development of combination therapies designed to overcome, or potentially prevent, the development of acquired immunotherapeutic resistance
2007: Direct numerical simulation of salt sheets and turbulence in a double-diffusive shear
[1] We describe three-dimensional direct numerical simulations (DNS) of double-diffusively stratified flow interacting with inflectional shear. The extreme difference in diffusivity (and thus minimum length scale) between heat, salt and momentum in seawater is replicated for the first time in a three-dimensional simulation. The primary instability generates salt sheets, which are oriented parallel to the direction of the sheared background flow. Subsequently, two distinct mechanisms of secondary instability combine to lead the flow to a turbulent state. In this state, the effective saline diffusivity is smaller than that calculated by previous investigators for the unsheared case. The Schmidt number is much smaller than unity, indicating that salt sheets are less effective at transporting momentum than is often assumed
Recommended from our members
Potential sinks for geologic storage of carbon dioxide generated by power plants in North and South Carolina
Duke Energy
Progress Energy
Santee Cooper Power
SCANA CorporationBureau of Economic Geolog
In-loop squeezing is real squeezing to an in-loop atom
Electro-optical feedback can produce an in-loop photocurrent with arbitrarily
low noise. This is not regarded as evidence of `real' squeezing because
squeezed light cannot be extracted from the loop using a linear beam splitter.
Here I show that illuminating an atom (which is a nonlinear optical element)
with `in-loop' squeezed light causes line-narrowing of one quadrature of the
atom's fluorescence. This has long been regarded as an effect which can only be
produced by squeezing. Experiments on atoms using in-loop squeezing should be
much easier than those with conventional sources of squeezed light.Comment: 4 pages, 2 figures, submitted to PR
The nature of iron-oxygen vacancy defect centers in PbTiO3
The iron(III) center in ferroelectric PbTiO3 together with an oxygen vacancy
forms a charged defect associate, oriented along the crystallographic c-axis.
Its microscopic structure has been analyzed in detail comparing results from a
semi-empirical Newman superposition model analysis based on finestructure data
and from calculations using density functional theory.
Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor
center. The position of the iron ion in the ferroelectric phase is found to be
similar to the B-site in the paraelectric phase. Partial charge compensation is
locally provided by a directly coordinated oxygen vacancy.
Using high-resolution synchrotron powder diffraction, it was verified that
lead titanate remains tetragonal down to 12 K, exhibiting a c/a-ratio of
1.0721.Comment: 11 pages, 5 figures, accepted in Phys. Rev.
Recommended from our members
Characterization of the chemical signatures of air masses observed during the PEM experiments over the western Pacific
Extensive observations of tropospheric trace species during the second NASA Global Tropospheric Experiment Western Pacific Exploratory Mission (PEM-West B) in February-March 1994 showed significant seasonal variability in comparison with the first mission (PEM-West A), conducted in September-October 1991. In this study we adopt a previously established analytical method, i.e., the ratio C2H2/CO as a measure of the relative degree of atmospheric processing, to elucidate the key similarities and variations between the two missions. In addition, the C2H2/CO ratio scheme is combined with the back-trajectory-based and the LIDAR-based air mass classification schemes, respectively, to make in-depth analysis of the seasonal variation between PEM-West A and PEM-West B (hereinafter referred to as PEM-WA and PEM-WB). A large number of compounds, including long-lived NMHCs, CH4, and CO2, are, as expected, well correlated with the ratio C2H2/CO. In comparison with PEM-WA, a significantly larger range of observed C2H2/CO values at the high end for the PEM-WB period indicates that the western Pacific was more impacted by "fresher" source emissions, i.e., faster or more efficient continental outflow. As in the case of PEM-WA, the C2H2/CO scheme complements the back-trajectory air mass classification scheme very well. By combining the two schemes, we found that the atmospheric processing in the region is dominated by atmospheric mixing for the trace species analyzed. This PEM-WB wintertime result is similar to that found in PEM-WA for the autumn. In both cases, photochemical reactions are found to play a significant role in determining the background mixing ratios of trace gases, and in this way the two processes are directly related and dependent upon each other. This analysis also indicates that many of the upper tropospheric air masses encountered over the western Pacific during PEM-WB may have had little impact from eastern Asia's continental surface sources. NOx mixing ratios were significantly enhanced during PEM-WB when compared with PEM-WA, in the upper troposphere's more atmospherically processed air masses. These high levels of NOx resulted in a substantial amount of photochemical production of O3. A lack of corresponding enhancements in surface emission tracers strongly implies that in situ atmospheric sources such as lightning are responsible for the enhanced upper tropospheric NOx. The similarity in NOx values between the northern (higher air traffic) and southern continental air masses together with the indications of a large seasonal shift suggests that aircraft emissions are not the dominant source. However, photochemical recycling cannot be ruled out as this in situ source of NOx. Copyright 1999 by the American Geophysical Union
- …