Abstract

Electro-optical feedback can produce an in-loop photocurrent with arbitrarily low noise. This is not regarded as evidence of `real' squeezing because squeezed light cannot be extracted from the loop using a linear beam splitter. Here I show that illuminating an atom (which is a nonlinear optical element) with `in-loop' squeezed light causes line-narrowing of one quadrature of the atom's fluorescence. This has long been regarded as an effect which can only be produced by squeezing. Experiments on atoms using in-loop squeezing should be much easier than those with conventional sources of squeezed light.Comment: 4 pages, 2 figures, submitted to PR

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019