3,831 research outputs found

    CP violation in neutrino oscillation and leptogenesis

    Get PDF
    We study the correlation between CP violation in neutrino oscillations and leptogenesis in the framework with two heavy Majorana neutrinos and three light neutrinos. Among three unremovable CP phases, a heavy Majorana phase contributes to leptogenesis. We show how the heavy Majorana phase contributes to Jarlskog determinant JJ as well as neutrinoless double β\beta decay by identifying a low energy CP violating phase which signals the CP violating phase for leptogenesis. For some specific cases of the Dirac mass term of neutrinos, a direct relation between lepton number asymmetry and JJ is obtained. For the most general case of the framework, we study the effect on J J coming from the phases which are not related to leptogenesis, and also show how the correlation can be lost in the presence of those phases.Comment: 4 pages and 3 figure

    Fermi-liquid effects in the gapless state of marginally thin superconducting films

    Full text link
    We present low temperature tunneling density-of-states measurements in Al films in high parallel magnetic fields. The thickness range of the films, t=6-9 nm, was chosen so that the orbital and Zeeman contributions to their parallel critical fields were comparable. In this quasi-spin paramagnetically limited configuration, the field produces a significant suppression of the gap, and at high fields the gapless state is reached. By comparing measured and calculated tunneling spectra we are able to extract the value of the antisymmetric Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density dependence of the effective parameter G^0_{eff} across the gapless state.Comment: 6 pages, 4 figure

    Recent Advances in Unconventional Density Waves

    Full text link
    Unconventional density wave (UDW) has been speculated as a possible electronic ground state in excitonic insulator in 1968. Recent surge of interest in UDW is partly due to the proposal that the pseudogap phase in high T_c cuprate superconductors is d-wave density wave (d-DW). Here we review our recent works on UDW within the framework of mean field theory. In particular we have shown that many properties of the low temperature phase (LTP) in alpha-(BEDT-TTF)_2MHg(SCN)_4 with M=K, Rb and Tl are well characterized in terms of unconventional charge density wave (UCDW). In this identification the Landau quantization of the quasiparticle motion in a magnetic field (the Nersesyan effect) plays the crucial role. Indeed the angular dependent magnetoresistance and the negative giant Nernst effect are two hallmarks of UDW.Comment: 18 pages, 12 figure

    Glucose metabolism and oscillatory behavior of pancreatic islets

    Full text link
    A variety of oscillations are observed in pancreatic islets.We establish a model, incorporating two oscillatory systems of different time scales: One is the well-known bursting model in pancreatic beta-cells and the other is the glucose-insulin feedback model which considers direct and indirect feedback of secreted insulin. These two are coupled to interact with each other in the combined model, and two basic assumptions are made on the basis of biological observations: The conductance g_{K(ATP)} for the ATP-dependent potassium current is a decreasing function of the glucose concentration whereas the insulin secretion rate is given by a function of the intracellular calcium concentration. Obtained via extensive numerical simulations are complex oscillations including clusters of bursts, slow and fast calcium oscillations, and so on. We also consider how the intracellular glucose concentration depends upon the extracellular glucose concentration, and examine the inhibitory effects of insulin.Comment: 11 pages, 16 figure

    Sound propagation in density wave conductors and the effect of long-range Coulomb interaction

    Full text link
    We study theoretically the sound propagation in charge- and spin-density waves in the hydrodynamic regime. First, making use of the method of comoving frame, we construct the stress tensor appropriate for quasi-one dimensional systems within tight-binding approximation. Taking into account the screening effect of the long-range Coulomb interaction, we find that the increase of the sound velocity below the critical temperature is about two orders of magnitude less for longitudinal sound than for transverse one. It is shown that only the transverse sound wave with displacement vector parallel to the chain direction couples to the phason of the density wave, therefore we expect significant electromechanical effect only in this case.Comment: revtex, 14 pages (in preprint form), submitted to PR

    Andreev scattering in nanoscopic junctions at high magnetic fields

    Full text link
    We report on the measurement of multiple Andreev resonances at atomic size point contacts between two superconducting nanostructures of Pb under magnetic fields higher than the bulk critical field, where superconductivity is restricted to a mesoscopic region near the contact. The small number of conduction channels in this type of contacts permits a quantitative comparison with theory through the whole field range. We discuss in detail the physical properties of our structure, in which the normal bulk electrodes induce a proximity effect into the mesoscopic superconducting part.Comment: 4 page

    Magnetothermopower and Nernst effect in unconventional charge density waves

    Full text link
    Recently we have shown that the striking angular dependent magnetoresistance in the low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 is consistently described in terms of unconventional charge density wave (UCDW). Here we investigate theoretically the thermoelectric power and the Nernst effect in UDW. The present results account consistently for the recent data of magnetothermopower in alpha-(BEDT-TTF)_2KHg(SCN)_4 obtained by Choi et al. (Phys. Rev. B, 65, 205119 (2002)). This confirms further our identification of LTP in this salt as UCDW. We propose also that the Nernst effect provides a clear signature of UDW.Comment: 4 pages, 4 figure

    Superconducting fluctuations at low temperature

    Full text link
    The effect of fluctuations on the transport and thermodynamic properties of two-dimensional superconductors in a magnetic field is studied at low temperature. The fluctuation conductivity is calculated in the framework of the perturbation theory with the help of usual diagram technique. It is shown that in the dirty case the Aslamazov-Larkin, Maki-Thomson and Density of States contributions are of the same order. At extremely low temperature, the total fluctuation correction to the normal conductivity is negative in the dirty limit and depends on the external magnetic field logarithmically. In the non-local clean limit, the Aslamazov-Larkin contribution to conductivity is evaluated with the aid of the Helfand-Werthamer theory. The longitudinal and Hall conductivities are found. The fluctuating magnetization is calculated in the one-loop and two-loop approximations.Comment: 12 pages, 4 figures, submitted to Phys. Rev.

    Lepton mixing angle θ13=0\theta_{13} = 0 with a horizontal symmetry D4D_4

    Full text link
    We discuss a model for the lepton sector based on the seesaw mechanism and on a D4D_4 family symmetry. The model predicts the mixing angle θ13\theta_{13} to vanish. The solar mixing angle θ12\theta_{12} is free--it will in general be large if one does not invoke finetuning. The model has an enlarged scalar sector with three Higgs doublets, together with two real scalar gauge singlets χi\chi_i (i=1,2 i = 1, 2) which have vacuum expectation values _0attheseesawscale.Theatmosphericmixingangle at the seesaw scale. The atmospheric mixing angle \theta_{23}isgivenby is given by \tan \theta_{23} = _0/0 /_0, and it is maximal if the Lagrangian is D4D_4-invariant; but D4D_4 may be broken softly, by a term of dimension two in the scalar potential, and then < \chi_2_0 becomes different from < \chi_1_0. Thus, the strength of the soft D4D_4 breaking controls the deviation of θ23\theta_{23} from π/4\pi / 4. The model predicts a normal neutrino mass spectrum (m3>m2>m1m_3 > m_2 > m_1) and allows successful leptogenesis if m14×103eVm_1 \sim 4 \times 10^{-3} \mathrm{eV}; these properties of the model are independent of the presence and strength of the soft D4D_4 breaking.Comment: 13 pages, one figur

    Dyonic dilaton black holes

    Get PDF
    The properties of static spherically symmetric black holes, which are both electrically and magnetically charged, and which are coupled to the dilaton in the presence of a cosmological constant, Lambda, are considered. It is shown that apart from the Reissner-Nordstrom-de Sitter solution with constant dilaton, such solutions do not exist if Lambda > 0 (in arbitrary spacetime dimension >=4 ). However, asymptotically anti-de Sitter dyonic black hole solutions with a non-trivial dilaton do exist if Lambda < 0. Both these solutions and the asymptotically flat (Lambda = 0) solutions are studied numerically for arbitrary values of the dilaton coupling parameter, g_0, in four dimensions. The asymptotically flat solutions are found to exhibit two horizons if g_0 = 0, 1, \sqrt{3}, \sqrt{6}, ..., \sqrt{n(n+1)/2},..., and one horizon otherwise. For asymptotically anti-de Sitter solutions the result is similar, but the corresponding values of g_0 are altered in a non-linear fashion which depends on Lambda and the mass and charges of the black holes. All dyonic solutions with Lambda <= 0 are found to have zero Hawking temperature in the extreme limit, however, regardless of the value of g_0.Comment: 24 pages, phyzzx, epsf, 7 in-text figures. Small addition to introduction, and a few extra reference
    corecore