126 research outputs found

    Fluctuating initial conditions in heavy-ion collisions from the Glauber approach

    Full text link
    In the framework of the Glauber approach we analyze the shape parameters of the early-formed system and their event-by-event fluctuations. We test a variety of models: the conventional wounded nucleon model, a model admixing binary collisions to the wounded nucleons, a model with hot spots, as well as the hot-spot model where the deposition of energy occurs with a superimposed probability distribution. We look in detail at the so-called participant multipole moments, obtained by an averaging procedure where in each event the system is translated to its center of mass and aligned with the major principal axis of the ellipse of inertia. Quantitative comparisons indicate substantial relative effects for eccentricity in variants of Glauber models. On the other hand, the dependence of the scaled standard deviation of the participant eccentricity on the chosen model is weak. For all models the values range from about 0.5 for the central collisions to about 0.3-0.4 for peripheral collisions, both for the gold-gold and copper-copper collisions. They are dominated by statistics and change only by 10-15% from model to model. We provide an approximate analytic expansion for the multipole moments and their fluctuations given in terms of the fixed-axes moments. For central collisions and in the absence of correlations it gives the simple formula for the scaled standard deviation of the participant eccentricity: sqrt(4/pi-1). Similarly, we obtain expansions for the radial profiles of the multipole distributions. We investigate the relevance of the shape-fluctuation effects for jet quenching and find them important only for very central events. Finally, we argue how smooth hydro leads to the known result v_4 ~ v_2^2, and further to the prediction Delta v_4/v_4 = 2 Delta v_2/v_2.Comment: 20 pages, 15 figures, additions include comparison to the CGC result

    Single-freeze-out model for ultra relativistic heavy-ion collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV and the LHC proton puzzle

    Full text link
    The single-freeze-out model with parametrized hypersurface and flow geometry is employed to analyze the transverse-momentum spectra of hadrons produced in the Pb+Pb collisions at the collision energy of {sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV} at the CERN Large Hadron Collider (LHC). With the notable exception for protons and antiprotons, we find a very good agreement between the model results and the data for the measured hadron species. The additional analysis of the HBT radii of pions helps us to select, from several different types of freeze-out studied in this work, the most realistic form of the freeze-out hypersurface. We find that discrepancy ratio between the model and experiment for the proton/antiproton spectra depends on pTp_T, dropping from 2 in the soft region to 1 around pT=1.5p_T=1.5 GeV.Comment: 9 pages, 10 figure

    Locally anisotropic momentum distributions of hadrons at freeze-out in relativistic heavy-ion collisions

    Full text link
    A spheroidal anisotropic local momentum distribution is implemented in the statistical model of hadron production. We show that this form leads to exactly the same ratios of hadronic abundances as the equilibrium distributions, if the temperature is identified with a characteristic transverse-momentum scale. Moreover, to a very good approximation the transverse-momentum spectra of hadrons are the same for isotropic and anisotropic systems, provided the size of the system at freeze-out is appropriately adjusted. We further show that this invariance may be used to improve the agreement between the model and experimental HBT results.Comment: 7 pages, 4 figure

    On the possibility of q-scaling in high energy production processes

    Full text link
    It has been noticed recently that transverse momenta (p_T) distributions observed in high energy production processes exhibit remarkably universal scaling behaviour. This is the case when a suitable variable replaces the usual p_T. On the other hand, it is also widely known that transverse momentum distributions in general follow a power-like Tsallis distribution, rather than an exponential Boltzmann-Gibbs, with a (generally energy dependent) nonextensivity parameter q. Here we show that it is possible to choose a suitable variable such that all the data can be fitted by the same Tsallis distribution (with the same, energy independent value of the q-parameter). Thus they exhibit q-scaling.Comment: Final version, accepted by J.Phys.

    Results of the Search for Strange Quark Matter and Q-balls with the SLIM Experiment

    Full text link
    The SLIM experiment at the Chacaltaya high altitude laboratory was sensitive to nuclearites and Q-balls, which could be present in the cosmic radiation as possible Dark Matter components. It was sensitive also to strangelets, i.e. small lumps of Strange Quark Matter predicted at such altitudes by various phenomenological models. The analysis of 427 m^2 of Nuclear Track Detectors exposed for 4.22 years showed no candidate event. New upper limits on the flux of downgoing nuclearites and Q-balls at the 90% C.L. were established. The null result also restricts models for strangelets propagation through the Earth atmosphere.Comment: 14 pages, 11 EPS figure

    Phase-space dependence of particle-ratio fluctuations in Pb+Pb collisions from 20A to 158A GeV beam energy

    Full text link
    A novel approach, the identity method, was used for particle identification and the study of fluctuations of particle yield ratios in Pb+Pb collisions at the CERN Super Proton Synchrotron (SPS). This procedure allows to unfold the moments of the unknown multiplicity distributions of protons (p), kaons (K), pions (π\pi) and electrons (e). Using these moments the excitation function of the fluctuation measure νdyn\nu_{\text{\text{dyn}}}[A,B] was measured, with A and B denoting different particle types. The obtained energy dependence of νdyn\nu_{\text{dyn}} agrees with previously published NA49 results on the related measure σdyn\sigma_{\text{dyn}}. Moreover, νdyn\nu_{\text{dyn}} was found to depend on the phase space coverage for [K,p] and [K,π\pi] pairs. This feature most likely explains the reported differences between measurements of NA49 and those of STAR in central Au+Au collisions

    Centrality dependence of proton and antiproton spectra in Pb+Pb collisions at 40A GeV and 158A GeV measured at the CERN SPS

    Get PDF
    The yields of (anti-)protons were measured by the NA49 Collaboration in centrality selected Pb+Pb collisions at 40A GeV and 158A GeV. Particle identification was obtained in the laboratory momentum range from 5 to 63 GeV/c by the measurement of the energy loss dE/dx in the TPC detector gas. The corresponding rapidity coverage extends 1.6 units from mid-rapidity into the forward hemisphere. Transverse mass spectra, the rapidity dependences of the average transverse mass, and rapidity density distributions were studied as a function of collision centrality. The values of the average transverse mass as well as the midrapidity yields of protons when normalized to the number of wounded nucleons show only modest centrality dependences. In contrast, the shape of the rapidity distribution changes significantly with collision centrality, especially at 40A GeV. The experimental results are compared to calculations of the HSD and UrQMD transport models.Comment: 25 pages, 12 figures, submitted to PR

    Energy dependence of kaon-to-proton ratio fluctuations in central Pb+Pb collisions from sNN\sqrt{s_{NN}} = 6.3 to 17.3 GeV

    Get PDF
    Kaons and protons carry large parts of two conserved quantities, strangeness and baryon number. It is argued that their correlation and thus also fluctuations are sensitive to conditions prevailing at the anticipated parton-hadron phase boundary. Fluctuations of the (K++K)/(p+pˉ)(\mathrm{K}^+ + \mathrm{K}^-)/(\mathrm{p}+\bar{\mathrm{p}}) and K+/p\mathrm{K}^+/\mathrm{p} ratios have been measured for the first time by NA49 in central Pb+Pb collisions at 5 SPS energies between sNN\sqrt{s_{NN}}= 6.3 GeV and 17.3 GeV. Both ratios exhibit a change of sign in σdyn\sigma_{\mathrm{dyn}}, a measure of non-statistical fluctuations, around sNN\sqrt{s_{NN}} = 8 GeV. Below this energy, σdyn\sigma_{\mathrm{dyn}} is positive, indicating higher fluctuation compared to a mixed event background sample, while for higher energies, σdyn\sigma_{\mathrm{dyn}} is negative, indicating correlated emission of kaons and protons. The results are compared to UrQMD calculations which which give a good description at the higher SPS energies, but fail to reproduce the transition to positive values.Comment: 5 pages, 4 figure
    corecore