109 research outputs found

    Virtual space and 2-dimensional effects in perspective displays

    Get PDF
    When interpreting three dimensional spatial relationships presented on a two dimensional display surface, the viewer is required to mentally reconstruct the original information. This reconstruction is influenced by both the perspective geometry of the displayed image and the viewer's eye position relative to the display. In a study which manipulated these variables, subjects judged the azimuth direction of a target object relative to a reference object fixed in the center of a perspective display. The results support a previously developed model which predicted that the azimuth judgement error would be a sinusoidal function of stimulus azimuth. The amplitude of this function was correctly predicted to be systematically modulated by both the perspective geometry of the image and the viewer's eye position relative to the screen. Interaction of the two components of the model, the virtual space effect and the 3D-to-2D projection effect, predicted the relative amplitudes of the sinusoidal azimuth error functions for the various conditions of the experiment. Mean azimuth judgements in some directions differed by as much as 25 degrees as a result of different combinations of eye position and image geometry. The results illustrate the need to consider the effects of perspective geometry when designing spatial information instruments, and show the model to be a reliable predictor of average performance

    A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array

    Full text link
    The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 - 10^9.5 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic

    First Light Measurements of Capella with the Low Energy Transmission Grating Spectrometer aboard the Chandra X-ray Observatory

    Get PDF
    We present the first X-ray spectrum obtained by the Low Energy Transmission Grating Spectrometer (LETGS) aboard the Chandra X-ray Observatory. The spectrum is of Capella and covers a wavelength range of 5-175 A (2.5-0.07 keV). The measured wavelength resolution, which is in good agreement with ground calibration, is Δλ≃\Delta \lambda \simeq 0.06 A (FWHM). Although in-flight calibration of the LETGS is in progress, the high spectral resolution and unique wavelength coverage of the LETGS are well demonstrated by the results from Capella, a coronal source rich in spectral emission lines. While the primary purpose of this letter is to demonstrate the spectroscopic potential of the LETGS, we also briefly present some preliminary astrophysical results. We discuss plasma parameters derived from line ratios in narrow spectral bands, such as the electron density diagnostics of the He-like triplets of carbon, nitrogen, and oxygen, as well as resonance scattering of the strong Fe XVII line at 15.014 A.Comment: 4 pages (ApJ letter LaTeX), 2 PostScript figures, accepted for publication in ApJ Letters, 200
    • …
    corecore