207 research outputs found

    Bulk Density of a Sandy Loam: Traffic, Tillage, and Irrigation-Method Effects

    Get PDF
    Modern crop production creates a cycle between soil compaction caused by traffic and alleviation of this condition by tillage or natural processes such as freezing and thawing. The objective of this study was to evaluate important management practices as they relate to changes in bulk density of a tilled sandy loam soil. Practices evaluated were irrigation method, time between tillage and traffic, tire pressure and wheel load of applied traffic, and controlled traffic. Relationships among bulk density, penetration resistance, and infiltration rate were determined. Experiments were conducted in the San Joaquin Valley of California, on a sandy loam soil (Entisol) with an organic-matter content of <1%. After tillage, settling and trafficking of a soil resulted in rapid changes in its bulk density until a new equilibrium was reached. Tire pressure of 408 kPa and wheel weight of 2724 kg applied at moisture contents near field capacity resulted in a bulk density of 1.92 Mg m-3 , compared with a value of 1.67 for no traffic. The time interval between tillage and traffic did not affect final bulk density. Drip irrigation, which did not saturate the soil, resulted in a bulk density of ≈0.1 Mg m-3 lower than flood irrigation, which saturated the soil surface. Wheel traffic in the furrow resulted in only small changes in the bulk density within the row. When tillage did not occur between cropping seasons, traffic caused high bulk densities in the furrow but only small changes in the row. An increase in bulk density from 1.7 to 1.89 Mg m-3 decreased the infiltration rate by four times and increased resistance to penetration at the end of the season by three times. Knowledge of how management practices affect bulk density can aid growers in reducing recompaction following tillage

    Meson Correlation Function and Screening Mass in Thermal QCD

    Full text link
    Analytical results for the spatial dependence of the correlation functions for all meson excitations in perturbative Quantum Chromodynamics, the lowest order, are calculated. The meson screening mass is obtained as a large distance limit of the correlation function. Our analysis leads to a better understanding of the excitations of Quark Gluon Plasma at sufficiently large temperatures and may be of relevance for future numerical calculations with fully interacting Quantum Chromodynamics.Comment: 11 page

    Potts Flux Tube Model at Nonzero Chemical Potential

    Get PDF
    We model the deconfinement phase transition in quantum chromodynamics at nonzero baryon number density and large quark mass by extending the flux tube model (three-state, three-dimensional Potts model) to nonzero chemical potential. In a direct numerical simulation we confirm mean-field-theory predictions that the deconfinement transition does not occur in a baryon-rich environment.Comment: 14 pp RevTeX, 10 Postscript figures, submitted to Phys. Rev D. (Corrected some typographical errors.

    Equation of State for physical quark masses

    Full text link
    We calculate the QCD equation of state for temperatures corresponding to the transition region with physical mass values for two degenerate light quark flavors and a strange quark using an improved staggered fermion action (p4-action) on lattices with temporal extent N_tau=8. We compare our results with previous calculations performed at twice larger values of the light quark masses as well as with results obtained from a resonance gas model calculation. We also discuss the deconfining and chiral aspects of the QCD transition in terms of renormalized Polyakov loop, strangeness fluctuations and subtracted chiral condensate. We show that compared to the calculations performed at twice larger value of the light quark mass the transition region shifts by about 5 MeV toward smaller temperaturesComment: 7 pages, LaTeX, 6 figures; minor corrections, typos corrected, references adde

    QCD equation of state at non-zero chemical potential

    Full text link
    We present our new results for the QCD equation of state at nonzero chemical potential at N_t=6 and compare them with N_t=4. We use the Taylor expansion method with terms up to sixth order in simulations with 2+1 flavors of improved asqtad quarks along a line of constant physics with m_l=0.1 m_s and approximately physical strange quark mass m_s.Comment: 7 pages, 10 figures, presented at Lattice 2008 (Nonzero Temperature and Density), College of William and Mary, Williamsburg, V

    Two-Flavor Staggered Fermion Thermodynamics at N_t = 12

    Get PDF
    We present results of an ongoing study of the nature of the high temperature crossover in QCD with two light fermion flavors. These results are obtained with the conventional staggered fermion action at the smallest lattice spacing to date---approximately 0.1 fm. Of particular interest are a study of the temperature of the crossover a determination of the induced baryon charge and baryon susceptibility, the scalar susceptibility, and the chiral order parameter, used to test models of critical behavior associated with chiral symmetry restoration. From our new data and published results for N_t = 4, 6, and 8, we determine the QCD magnetic equation of state from the chiral order parameter using O(4) and mean field critical exponents and compare it with the corresponding equation of state obtained from an O(4) spin model and mean field theory. We also present a scaling analysis of the Polyakov loop, suggesting a temperature dependent ``constituent quark free energy.''Comment: LaTeX 25 pages, 15 Postscript figure
    • 

    corecore