2,036 research outputs found

    Gyrokinetic studies of the effect of beta on drift-wave stability in NCSX

    Get PDF
    The gyrokinetic turbulence code GS2 was used to investigate the effects of plasma beta on linear, collisionless ion temperature gradient (ITG) modes and trapped electron modes (TEM) in National Compact Stellarator Experiment (NCSX) geometry. Plasma beta affects stability in two ways: through the equilibrium and through magnetic fluctuations. The first was studied here by comparing ITG and TEM stability in two NCSX equilibria of differing beta values, revealing that the high beta equilibrium was marginally more stable than the low beta equilibrium in the adiabatic-electron ITG mode case. However, the high beta case had a lower kinetic-electron ITG mode critical gradient. Electrostatic and electromagnetic ITG and TEM mode growth rate dependencies on temperature gradient and density gradient were qualitatively similar. The second beta effect is demonstrated via electromagnetic ITG growth rates' dependency on GS2's beta input parameter. A linear benchmark with gyrokinetic codes GENE and GKV-X is also presented.Comment: Submitted to Physics of Plasmas. 9 pages, 27 figure

    Simulating Gyrokinetic Microinstabilities in Stellarator Geometry with GS2

    Full text link
    The nonlinear gyrokinetic code GS2 has been extended to treat non-axisymmetric stellarator geometry. Electromagnetic perturbations and multiple trapped particle regions are allowed. Here, linear, collisionless, electrostatic simulations of the quasi-axisymmetric, three-field period National Compact Stellarator Experiment (NCSX) design QAS3-C82 have been successfully benchmarked against the eigenvalue code FULL. Quantitatively, the linear stability calculations of GS2 and FULL agree to within ~10%.Comment: Submitted to Physics of Plasmas. 9 pages, 14 figure

    The role of E1-E2 interplay in multiphonon Coulomb excitation

    Get PDF
    In this work we study the problem of a charged particle, bound in a harmonic-oscillator potential, being excited by the Coulomb field from a fast charged projectile. Based on a classical solution to the problem and using the squeezed-state formalism we are able to treat exactly both dipole and quadrupole Coulomb field components. Addressing various transition amplitudes and processes of multiphonon excitation we study different aspects resulting from the interplay between E1 and E2 fields, ranging from classical dynamic polarization effects to questions of quantum interference. We compare exact calculations with approximate methods. Results of this work and the formalism we present can be useful in studies of nuclear reaction physics and in atomic stopping theory.Comment: 10 pages, 6 figure

    Static and Dynamic Properties of a Viscous Silica Melt Molecular Dynamics Computer Simulations

    Full text link
    We present the results of a large scale molecular dynamics computer simulation in which we investigated the static and dynamic properties of a silica melt in the temperature range in which the viscosity of the system changes from O(10^-2) Poise to O(10^2) Poise. We show that even at temperatures as high as 4000 K the structure of this system is very similar to the random tetrahedral network found in silica at lower temperatures. The temperature dependence of the concentration of the defects in this network shows an Arrhenius law. From the partial structure factors we calculate the neutron scattering function and find that it agrees very well with experimental neutron scattering data. At low temperatures the temperature dependence of the diffusion constants DD shows an Arrhenius law with activation energies which are in very good agreement with the experimental values. With increasing temperature we find that this dependence shows a cross-over to one which can be described well by a power-law, D\propto (T-T_c)^gamma. The critical temperature T_c is 3330 K and the exponent gamma is close to 2.1. Since we find a similar cross-over in the viscosity we have evidence that the relaxation dynamics of the system changes from a flow-like motion of the particles, as described by the ideal version of mode-coupling theory, to a hopping like motion. We show that such a change of the transport mechanism is also observed in the product of the diffusion constant and the life time of a Si-O bond, or the space and time dependence of the van Hove correlation functions.Comment: 30 pages of Latex, 14 figure

    Coupled-barrier diffusion: the case of oxygen in silicon

    Full text link
    Oxygen migration in silicon corresponds to an apparently simple jump between neighboring bridge sites. Yet, extensive theoretical calculations have so far produced conflicting results and have failed to provide a satisfactory account of the observed 2.52.5 eV activation energy. We report a comprehensive set of first-principles calculations that demonstrate that the seemingly simple oxygen jump is actually a complex process involving coupled barriers and can be properly described quantitatively in terms of an energy hypersurface with a ``saddle ridge'' and an activation energy of ∼2.5\sim 2.5 eV. Earlier calculations correspond to different points or lines on this hypersurface.Comment: 4 Figures available upon request. Accepted for publication in Phys. Rev. Let

    Validation in Fusion Research: Towards Guidelines and Best Practices

    Full text link
    Because experiment/model comparisons in magnetic confinement fusion have not yet satisfied the requirements for validation as understood broadly, a set of approaches to validating mathematical models and numerical algorithms are recommended as good practices. Previously identified procedures, such as verification, qualification, and analysis of error and uncertainty, remain important. However, particular challenges intrinsic to fusion plasmas and physical measurement therein lead to identification of new or less familiar concepts that are also critical in validation. These include the primacy hierarchy, which tracks the integration of measurable quantities, and sensitivity analysis, which assesses how model output is apportioned to different sources of variation. The use of validation metrics for individual measurements is extended to multiple measurements, with provisions for the primacy hierarchy and sensitivity. This composite validation metric is essential for quantitatively evaluating comparisons with experiments. To mount successful and credible validation in magnetic fusion, a new culture of validation is envisaged.Comment: 27 pages, 1 table, 6 figure

    Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform

    Get PDF
    Visible and near-infrared spectrum photonic integrated circuits are quickly becoming a key technology to address the scaling challenges in quantum information and biosensing. Thus far, integrated photonic platforms in this spectral range have lacked integrated photodetectors. Here, we report silicon nitride-on-silicon waveguide photodetectors that are monolithically integrated in a visible light photonic platform on silicon. Owing to a leaky-wave silicon nitride-on-silicon design, the devices achieved a high external quantum efficiency of >60% across a record wavelength span from λ ~ 400 nm to ~640 nm, an opto-electronic bandwidth up to 9 GHz, and an avalanche gain-bandwidth product up to 173 ± 30 GHz. As an example, a photodetector was integrated with a wavelength-tunable microring in a single chip for on-chip power monitoring
    • …
    corecore