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Abstract 

In this study two materials, MnCo2O4 and MnCo1.8Fe0.2O4 are studied as potential protective coatings 

for Solid Oxide Fuel Cell interconnects working at 750°C. First powder fabrication by a modified 

Pechini method is decribed followed by a description of the coating procedure. The protective action 

of the coating applied on Crofer 22 APU is evaluated by following the area specific resistance (ASR) of 

the scale/coating for 5500 hours including several thermal cycles. The coating is prepared by brush 

painting and has a porous structure after deposition. Post mortem microstructural characterization 

performed on the coated samples shows good protection against chromium diffusion from the 

chromia scale ensured by a formation of a dense reaction layer. This study shows, that even without 

high temperature sintering and/or reactive sintering it is possible to fabricate protective coatings 

based on MnCo spinels. 

mailto:sebmo@dtu.dk


 

Keywords: 

protective coating; high temperature corrosion; solid oxide fuel cell; interconnect; spinel; electrical 

conductivity; 

 

Introduction 

High temperature ceramic solid oxide cells (including fuel cells and electrolysis cells) are gaining 

attention due to their potential to reach high electrical efficiencies. Working temperature in the 

range from 700°C to 800°C offers high electrochemical performance without use of expensive 

catalysts. Due to recent advances in electrode development, the operation temperature of the fuel 

cells can be reduced from 800°C to around 750°C without significant shortcomings with respect to 

performance [1,2]. One of the most important issues hindering their more widespread 

commercialization is long-term durability of the cells and stacks. One of the major degradation 

phenomena is caused by the steel interconnects in the stack. Due to the growth of a poorly 

conductive oxide the electrical resistance of the interconnect increases over time. This results in an 

increase of the ohmic resistance of the stack. Another important degradation process related to the 

interconnect is the evaporation/diffusion of chromium to the active oxygen electrodes, where it 

results in an increase of the polarization resistance [3]. Commonly used cathode materials react 

heavily with Cr species and efforts to find Cr-resistant cathodes have only been moderately 

successful [4,5]. These two phenomena can cause an irreversible and severe degradation of the fuel 

cell stack. 

Stainless steel has become the preferred interconnect material for planar SOFC stacks in the recent 

years. Its advantages with respect to the previously used ceramic interconnects are lower cost and 

simplified processing [6–10]. Crofer 22 APU is the most commonly used alloy in SOFC applications 



[11,12]. Specifically designed for use at high temperatures, it contains ~22 wt.% of chromium and 

~0.5 wt.% of Mn and some other minor alloying elements. Small addition of Mn to the alloy causes 

formation of a MnCr spinel on top of the chromia scale during the oxidation. This limits chromium 

evaporation due to lowered chromium activity on the surface. However, tests have shown that in 

order to operate fuel cells effectively with sufficiently low degradation rates, an additional coating 

blocking chromium outward diffusion and evaporation is required [13]. 

Among many possible coatings [14–21], manganese cobalt spinels were studied extensively as 

protective coatings for SOFC/SOEC interconnects [14,22]. These materials are compatible with 

contact layer materials in the fuel cells and have also proven to effectively block chromium outward 

diffusion and evaporation. As shown by Wu et al. [13], application of Mn-Co spinel to an interconnect 

resulted in much lower degradation of a solid oxide fuel cell, compared to a setup with uncoated 

steel. Similar results were shown by Yang et al. [23]. Long-term oxidation behavior of a spinel coated 

441 stainless steel was reported by Stevenson et al. [24]. In the present study a 9000 hours long 

electrical characterization was performed at 800°C. Samples were coated with either Mn1.5Co1.5O4 or 

Mn1.475Co1.475Ce0.05O4. The coated samples had much smaller initial ASR value and also smaller 

degradation rate than the uncoated reference. Addition of Ce to the coating further improved oxide 

scale adhesion. Kidner et al. [25] tested Mn1.5Co1.5O4 coatings on 441 and Crofer 22 APU. For 

comparison, samples with and without “reduction firing” (based on first the reduction of the coating 

and then the re-oxidation of the coating) were studied measuring cross-scale resistance. For both 

steels, the authors reported that samples without a reduction firing have much higher resistance and 

also that the ASR increased at a higher rate. After only 1000 hours test ASR values exceeded 

~100 mΩ cm2. The authors concluded that a reduction step is required to obtain a sufficiently dense, 

stable microstructure of the coating. 

In comparison to pure Co3O4 spinel, addition of Mn raises the electrical conductivity by about one 

order of magnitude and improves matching of thermal expansion coefficient with that of the 



stainless steel. Also in terms of the cost and toxicity, replacing Co with Mn is advantageous. From 

different compositions of (Mn,Co)3O4 spinels used for protective coatings, MnCo2O4 and Mn1.5Co1.5O4 

are the most widely studied [13,26–32]. The first one is a pure cubic spinel whereas the second one 

at room temperature is a mixture of tetragonal Mn2CoO4 and cubic MnCo2O4 [23,33]. These materials 

were shown to successfully block Cr diffusion and protect fuel cell cathodes from the degradation 

[13]. During long time exposure at ~800°C iron might also diffuse from steel to the coating. To 

mitigate the transport and for improved TEC matching, iron doped spinel has also been proposed as 

an alternative [34,35]. Also effects of Cu, Ce, Ni substitutions were studied to increase the electrical 

conductivity and thermal expansion coefficient match [36–38]. 

In the literature many methods for fabrication of protective coatings were reported, including sol-gel 

[30], spraying process (including plasma processes) [39], slurry coating [32], screen-printing [40], 

electrophoretic deposition [41–44], thermal evaporation [33] and finally electroplating [45]. These 

methods result in different microstructures of the as-prepared coatings and require different level of 

post application processing. To improve the density of the coatings, either mechanical compaction 

[16] or reduction firing (reactive sintering) [22,46] was proposed. When exposed to a reducing 

atmosphere, the spinel decomposes to MnO and metallic Co. Upon reoxidation it reforms a spinel 

again with a denser microstructure . This approach has been commonly used with some success. 

Promising tests on a laboratory level resulted in transfer to the prototype stage by several groups. 

Several stack tests performed with the use of (Mn,Co)3O4 based spinels have proven its feasibility as 

a coating that can ensure long-term stability of large stacks. In a 2.5 kW stack test including 18 

repeating units, 100 µm thick iron doped spinel deposited by atmospheric plasma spraying on Crofer 

22 APU proved impermeable to Cr over > 6000 hours test period at temperature below 800°C [47]. 

Also other stack tests performed at FZ Jülich on (Mn,Co,Fe)3O4 spinel coated Crofer 22 APU 

interconnects result in low stack degradation rates holding promise for future commercialization. 



[48–50]. These studies in full scale stacks at technologically relevant operation conditions clearly 

shows the potential of the Mn,Co spinels as interconnect coating material. 

Summarizing results obtained so far, manganese-cobalt spinels have been proven successful as 

protective coatings both in research and in real stack operation (when considering T < 850°C 

operation). Relatively thick and dense layers of spinels prepared by plasma techniques are proving 

that these materials can be used over long times with very low degradation rates. To reduce cost and 

facilitate manufacture it is of relevance to investigate alternative fabrication routes of such coatings. 

In this work a novel processing route for preparing coatings of MnCo2O4 and MnCo1.9Fe0.1O4 is 

presented. First the synthesis of phase pure material is presented, then preparation of mechanically 

stable protective coatings with use of an infiltration step is introduced. Prepared coatings are 

analyzed by measuring the area specific resistance at 750°C over a 5000 hours ageing experiment. 

Finally, results of microstructural analysis prior to and after the ageing test are reported. 

Experimental 

For preparation of the coatings, appropriate spinel powders were produced by a modified 

Pechini/polymeric precursor method [51]. In this work spinel powders of MnCo2O4 (abbreviated as 

MCO) and MnCo1.8Fe0.2O4 (abbreviated as MCFO) were prepared. Nitrates of Mn, Co and Fe 

(hydrated nitrates, Sigma Aldrich, USA) were dissolved in 99.9% ethanol. Then ethlyene glycol and 

citric acid were added during continuous stirring on a hot plate. This solution was then further stirred 

with simultaneous heating at 80°C for around 48 hours. During this time ethanol evaporates and 

metal cations form chelates with ethylene glycol and citric acid. Part of this solution was used later to 

impregnate the coating. Next step in the preparation of the powder was raising the temperature in 

steps: first to 130°C and then 150°C to form a solid gel/resin. Afterwards the gel was 

calcined/pyrolised at 400°C in a muffle furnace. The calcined material was further heat treated at 

800°C to fully crystallize spinel powders. 



Coatings were prepared in two steps, resembling the methodology presented in [51]. First a porous 

scaffold of the spinel was prepared on the cleaned steel. Later, this porous matrix was infiltrated with 

the equivalent solution, containing the same metal nitrates as used previously to prepare the spinel 

powders. 

The porous scaffold coatings for later impregnation were prepared by a simple brush painting 

method on both sides of the alloys. Pastes were prepared by mixing powders with ethylene glycol 

plus addition of a binder (ESL403, Electroscience, USA). Mixing was performed in an agate mortar. 

Crofer 22 APU (Thyssen Krupp VDM, Germany) plates with thickness of 1.5 mm, was laser cut to 

dimensions of 40 x 20 mm2. Only the central part of 2 x 2 cm2 was painted as an active area on both 

sides of the alloy. Crofer 22 APU was used in the as-received state, only cleaned in ethanol and 

acetone in an ultrasonic bath prior to use. Alloy samples were weighed in order to control weight 

(thus thickness) of the painted coatings. For each spinel material two thicknesses of the coatings 

were prepared. Approximately 30 µm and 50 µm thick coatings were obtained (as observed later by 

cross-section microscopy analysis). After painting the samples were left for 15 minutes to level off 

the paste at room temperature and then dried at 50°C and subsequently at 130°C. Final removal of 

ethylene glycol and binder residues took place via calcination at 400°C in air. 

The as-prepared samples were used for the infiltration of the same material into the porous matrix. 

To lower the viscosity of the solution used for the infiltration, it was first mixed 50:50 by volume with 

butoxyethanol. In order to infiltrate coatings, several drops of the solution were placed on top of the 

coating and left to penetrate its volume. After drying at 50°C and 80°C the samples were heat treated 

at 400°C. This formed a single infiltration procedure. Impregnation procedure was repeated in total 

10 times. 

For qualitative analysis of the obtained powders, x-ray diffractometry (XRD) was used. Patterns were 

collected at room temperature using a Bruker D8 Advance apparatus with Cu Kα radiation and a 

LynxEye detector in a standard 2θ configuration. 



A JEOL JEM-3000F transmission electron microscope (TEM), operated at 300 kV and equipped with a 

field  emission gun, was employed to characterize the prepared powders, which was carefully 

scratched from the targeting surface of samples. The point resolution is 0.19 nm. An energy 

dispersive X-ray spectroscopy (EDS) microanalysis detector was used to conduct chemical analysis of 

samples. 

For the electrical characterization of the coatings at high temperatures, a specially designed 

measurement rig using a clam shell furnace was used. It allows for the measurement of the electrical 

resistance across the growing chromia layer, which is represented by the Area Specific Resistance. A 

schematic drawing of the rig is shown in Figure 3A. It allows for a simultaneous measurement of 

several samples with separate measurement of both coated sides (interfaces) for all samples. One 

single repeating unit consists of the coated Crofer 22 APU sample with spot welded platinum wire 

and two contacting ceramic plates facing the coating in the 2 x 2 cm2 active area. Another platinum 

wire is placed in between neighboring ceramic plates. These contacting plates are made from 

La0.85Sr0.15MnO3 (LSM) ceramic by a slip casting process. LSM plates are in porous bisque state and 

their cross-plane resistance in the setup is measured separately for reference. For improved 

electrical contact between the LSM plate and the measured surface, a LSM contact layer is sprayed 

on the LSM plates. This is necessary to ensure good contact with reproducible properties over a large 

surface area [52,53]. In this setup, a single voltage drop (single interface) is measured across the alloy 

and the contacting plate. The corresponding resistance includes the resistances of the alloy plate, the 

oxide scale, the coating, the LSM plate, and relevant interfaces between them. This setup closely 

resembles the situation in a real SOFC/SOEC stack, where contacting pastes are often applied [54–

57]. On top of the samples arranged for the ASR measurement, an alumina block is placed and a 

mechanical load of 8 kg (corresponding to 0.2 MPa load) is applied. An electrical current equal to 

0.5 A cm-2 was passed through the stack to allow determination of the interface resistances. The 

current value was measured by use of a reference resistance for which a voltage drop was logged. 



Temperature of the samples was monitored by two thermocouples (TC1 and TC2 in Figure 3A) placed 

few millimeters away from the samples. 

After arranging the samples and connecting all wires to terminals of the data logging system, the 

furnace was heated to obtain a temperature of 750°C next to the samples. The heating rate was 

60 °/h. The electrical current was turned on at a temperature of 400°C. After 5000 hours of aging at 

750°C, thermal cycling between 750°C and room temperature was performed. In order to accurately 

measure the resistance as a function of temperature for the calculation of the activation energy, first 

a cooling step was performed with a ramp rate of 10 °/h. Afterwards, heating and cooling were 

performed with a ramp rate of 120 °/h. Current was flowing at all times during temperature ramping. 

After the final cooling down, the samples were removed from the rig and embedded in epoxy 

(EpoFix, Struers, Denmark) for the preparation of samples suitable for electron microscopy. During 

the long-term exposure the entire stack sintered together and remained a single block. Final 

polishing step was performed with a 0.2 µm diamond polishing paste. Before microscopy analysis the 

sample surface was sputtered with carbon to avoid surface charging during the analysis. 

Scanning electron microscopy (SEM) images were taken using a Zeiss Supra 35 FEG-SEM and a table 

top Hitachi TM3000 equipped with energy dispersive X-ray analyzers (Noran and Bruker, 

respectively). 

Results and discussion 

Fabrication of manganese-cobalt spinel powders was the first task in this work. For both 

compositions (MnCo2O4-MCO and MnCo1.8Fe0.2O4-MCFO), around 50 grams of powders were 

produced in a single step. Phase purity of the powders was checked by x-ray diffractometry. Both the 

powders after the first calcination step at 400°C and the one after final heat treatment at 800°C were 

analyzed. 



Measured diffractograms are shown in Figure 1A. Already after heat treatment at 400°C the spinel 

phase is formed. Broad peaks indicate very small crystallite size. In the case of the MCO powder, 

several peaks can be clearly ascribed to the tetragonal spinel phase (ICDD card number 77-471). In 

the case of MCFO, peaks are very broad so a clear differentiation between possible different spinels 

is difficult, however no clear peaks from secondary phases are observed. After the second heat 

treatment step at 800°C, only a pure cubic spinel phase (ICDD card numer 23-1237) is detected for 

both materials with no sign of other phases being present. 

The possible presence of other spinel phases might not be detrimental to its protective action, as 

similar compositions are also used as protective coatings for the interconnects. In addition to the 

MnCo2O4 composition synthesized in this work, another composition, Mn1.5Co1.5O4, is also widely 

studied, which is actually a mixture of cubic and tetragonal phases at room temperature. 

For the powder analysis transmission electron microscope was also used. Figures 1B and 1C show the 

morphology of the synthesized particles. The particle size of both the materials is estimated to be 

around 250 nm. The characteristic crystal planes were identified by the high-resolution TEM images. 

On the powders also a compositional analysis by EDS was performed to check the cation content in 

the materials. For the MCO powder, the cation content (at.%) was 33.9 and 66.1 for the Mn:Co, thus 

the ratio is 1.95 and close to the nominal one. For the MCFO, the cation content (at.%) was 

33.2:5.3:61:5 for the Mn:Fe:Co respectively. The ratio of the B site cations (Co+Fe) to the A site is 

2.01. The ratio of Fe to Co content is 0.09, so also close to the desired composition. 

Thus, as concluded by the x-ray diffractometry and transmission electron microscope analysis, the 

modified Pechini method is well suited to produce phase pure powders with the desired composition 

and crystallite size (~250 nm). 



 

Figure 1. A) X-ray diffractometry patterns of MnCo2O4 and MnCo1.9Fe0.1O4 powders 

after heat treatment at 400°C and 800°C and high-resolution TEM images of the B) MCO and C) 

MCFO powders prepared by a modified Pechini method and calcined at 800°C. 

Cross section and surface images of the as-prepared, painted and impregnated MCFO coating on the 

Crofer 22 APU steel are shown in Figure 2. The thickness of the coating is around 30 µm. The coating 

is relatively porous. In the high magnification images, surface views of the non-impregnated and 

impregnated coatings are shown. The grain size of the MCFO material is around 250 nm. After the 

impregnation, some degree of densification occurs. Grains are much better connected which is 

important for its electrical conductivity and mechanical integrity. The grains of the impregnated 

phase are smaller than ~5 nm. So in the case of the initially produced powders (used for initial XRD 

characterization shown in Figure 1A), the respective grain size for a powder processed at 400°C was 

5 nm and grew to 250 nm after processing at 800°C. 

Protective layers developed in this work are not sintered at high temperature or by the reduction 

sintering method prior to characterization. Before the impregnation, coatings are very easily 

destroyed and spall off readily. After the impregnation and heat treatment however, grains are well 

connected and mechanical properties allow for safe handling of the samples. 



 

Figure 2. SEM images of the prepared coatings, cross-section (A) and surface of the impregnated coating 

(B,D,E). Also shown surface of the coating without impregnation (C). 

The as-prepared samples, coated either with MnCo2O4 or MnCo1.8Fe0.2O4 and with two thicknesses 

(30 µm and 50 µm) for each composition were tested electrically at 750°C for the evaluation of the 

area specific resistance (ASR) under a current load of 500 mA cm-2. 

Figure 3B and 3C presents a continuous ASR measurement for selected, representative samples. Also 

a value measured for the auxiliary LSM contact plate is shown. It is observed that after the initial 500 

hours with a relatively rapid ASR increase rate, all coated samples behaved very similarly with a slow 

increase of the ASR over time (the rate of degradation decreases over time). The un-coated Crofer 22 

APU sample shows an initial decrease of the ASR lasting also around 500 hours and then a steady 

increase with a higher rate than for all the coated samples. 



At 1000 hours, the setup was cooled down unintentionally. It was subsequently heated up again to 

750°C. This unplanned temperature cycle had only a minor effect on the ASR of the coated samples 

and a slightly larger effect on that of the contacting plate. The lowering of the ASR values after this 

thermal cycle might be due to improved contact after stresses relaxation during the cycle. 

As can be seen in Figure 3B, the ASR level of the LSM contact plate is around 10 mΩ cm2 and is 

decreasing steadily over time. The plates were initially not sintered and were used in a bisque 

sintered state in the setup. A slow sintering process takes place during the measurement, which 

results in an increasing electrical conductance. 

Area Specific Resistance calculated in this work are represented by two values: ASR(TOTAL), which 

includes the oxide, coating and LSM plate resistances, and ASR(TOTAL-LSM), where the resistance of the 

LSM plate has been substracted based on the in-situ measurement of the resistance of one such 

plate. 

The measured ASR(TOTAL) for all coated samples is around 15 mΩ cm2. This value contains the 

resistance of the steel (which is negligible), the oxide scale, the coating, the LSM contacting plate, 

and all the interfaces. Taking into account the ASR of the contact plate and subtracting it from the 

ASR values obtained for the samples, the ASR of the pure oxide/coating is much lower (Figure 3C) 

~5 mΩ cm2. There is usually a small scatter between the starting levels of the ASR for all samples, 

values lie between 10 mΩ cm2 and 15 mΩ cm2. This is believed to originate from the LSM plate with 

the sprayed LSM contact layer, which can either be slightly misaligned or with different thickness. For 

the long-term performance evaluation, the starting ASR value is small and behavior is dominated by 

the increase due to oxide scale growth. The most conservative evaluation will be to compare the 

absolute rate of increase of the ASR (expressed as δASR/1000h) over time. 



 

Figure 3. A) Schematic drawing of the area specific resistance measurement setup and plots of ASR as a 

function of time during oxidation at 750°C: B) ASR including the LSM plate contribution is plotted, whereas in C) 

ASR with subtracted contribution from the LSM plate is plotted. 

From the average increase of the ASR observed between 2000 and 5000 hours, the degradation rate 

of ASR, for both ASR(TOTAL) and ASR(TOTAL-LSM) was calculated assuming a linear behaviour. Obtained ASR 

values are included in Figure 4. All the coated samples show very similar degradation rates. The 

thickness and the material composition does not influence the degradation rates. For ASR(TOTAL), all 

coated steels are characterized by a degradation rate close to 0.3 mΩ cm2 per 1000 hour. Uncoated 

Crofer 22 APU has an ASR increase rate of 1.1 mΩ cm2 per 1000 hour, which is almost 4 times higher. 

The results show that all the coatings studied in this work have a very positive effect on reducing the 

ASR degradation. 

The observed degradation rates can be caused mainly by a slower growth of the poorly conductive 

chromium oxide at the interface between the alloy and the coating. The conductivity of this oxide 

layer is expected to be in the order of few mS cm-1. For comparison, the electrical conductivity of the 

MCO and MCFO are around 60 S cm-1; so around 4 orders of magnitude higher. In case of the 

uncoated samples, the contacting of the steel with the LSM contacting plate will influence the 



growth of the oxide scale, as the LSM has been reported to have a positive effect on corrosion 

protection [20,58]. 

Using the ASR increase rate values and assuming a simple linear extrapolation, ASR values after 

40000 hours of operation can be estimated. The ASR increase could be expected to follow a parabolic 

behaviour, hence a linear extrapolation is a “worse case scenario” approximation – it will yield higher 

values than the more realistic parabolic extrapolation. Here, the resulting ASR has been calculated 

after 40000 hours for the ASR(TOTAL-LSM) values. Taking the initial ASR value of 2-5 mΩ cm2, the ASR 

after 40000 hours will reach ~20 mΩ cm2 for coated samples and up to 55 mΩ cm2 for the uncoated 

ones. If one would use the ASR(TOTAL) for the calculation, results would be roughly the same, as lower 

ASR increase rate is offset by higher starting value (10-15 mΩ cm2), thus yielding very similar 

estimates (27 and 59 mΩ cm2 for coated and uncoated respectively). Used data extrapolation 

method does not take into account possible effects of a dual atmosphere exposure, changes of gas 

flows/composition and possible additional thermal cycles and thus should be treated only as a 

limited approximation. 

From the measurements presented here, it is thus clear that spinel coatings without a reduction 

sintering step can be effective in reducing the resistance increase with time over the thermally grown 

oxide scale over long time (>5000 hours) including thermal cycling. In general, these results are 

applicable for both the fuel and electrolysis cell mode operation (reversed current direction). No 

difference in the ASR development has been noticed for the two studied interfaces of each sample, 

as opposed to some other research [59–61]. One possible explanation for the lack of the difference 

might be relatively low current density used in this work (500 mA cm-2). 

Prepared coatings effectively improve electrical performance of the alloy allowing for a lower ohmic 

resistance and thus losses caused by the oxide scale growth. It must be noted that this setup 

evaluates only ohmic resistance changes, possible adverse/beneficial effects of the coatings on 

electrode polarization when placed next to an operating cell was not evaluated. 



 

Figure 4. Comparison of ASR increase rates for coated and uncoated samples. 

After the 5100 hours of isothermal aging, thermal cycling between 750°C and room temperature was 

performed (the samples also underwent one unintended thermal cycle after 1000 hours of 

operation). The ASR changes during the last five cycles for a representative sample are presented in 

Figure 5A. Cooling to room temperature and heating up back to 750°C had no effect on the ASR of 

any of the samples at 750°C. This shows that neither in the coating nor in the formed oxide scale 

severe cracking occurs. The resistance value at room temperatures is 5 orders of magnitude higher 

than at 750°C reflecting the thermal activation of the charge transport through the oxide scale 

(believed to dominate the electrical response). 



 

Figure 5. Plot of ASR values for MCO sample A) during thermal cycling between 750°C and room temperature 

and B) as a function of the inverse of temperature. 

From the dependence of the Area Specific Resistance on the inverse of the temperature, the 

activation energy, EA, of the effective electrical conductivity can be calculated. In this case an 

Arrhenius type equation is fitted to plots as shown in Figure 5B (with ASR being proportional to the 

inverse of σ): 
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where: σ – electrical conductivity [S cm-1], σ0 – pre exponential constant [S cm-1], EA – activation 

energy [eV]. kB – Boltzmann constant [eV K-1] and T – temperature [K]. 

A plot of the ASR values as a function of the temperature for all the coated samples and the LSM 

contact plate during the first slow cooling cycle after 5100 hours is shown in Figure 5B. According to 

Equation 1, the slope of the curves is proportional to the activation energy. 

For all the samples, activation energies for the high temperature and the lower temperature region 

are noticeably different. All the coated samples follow exactly the same behaviour. In the high 

temperature region (between 550°C and 750°C), the activation energy is 0.51 eV, while in the lower 

temperature range (between 500°C and 200°C) it is ~0.34 eV. For the un-coated sample, the 

activation energies are 0.39 eV and 0.32 eV for the high and the low temperature region, 



respectively. In the lower temperature region, the activation energy for both the coated and the 

uncoated samples is relatively similar whereas they differ at high temperatures. The activation 

energy measured for the LSM contact plate is much lower, being 0.10 eV and 0.22 eV in the high and 

low temperature region respectively. In the lower temperature range, some measurement noise is 

visible, that might be due to very low current and high resistance, also with a Joule heating 

contributing to the noise. Values obtained for the spinel coated samples agree with the values 

reported in the literature. For pure spinels in the form of sintered pellets, activation energy of 

~0.45 eV has been reported [62], whereas if deposited as a coating, 0.70 eV has been reported by 

Kruk et al. [40]. It was similar (0.67 eV) to uncoated samples suggesting the same mechanism of 

electrical conduction or rather that part of the oxide scale/coating that dominate the resistance is 

the same. In some other studies, the activation energy of Mn,Co spinels has been measured to be 

~0.2 eV, whereas activation energies for Cr2O3 and Mn,Cr spinels have been reported to be 0.51 eV 

and 0.44 eV respectively [63]. The ASR measured here is the sum of the thermally grown chromia 

scale, the reaction layer (spinel structure) and the coating. Evidently, the composition differences 

between coatings and the thickness of the coating do not affect the measured ASR, indicating that 

this is dominated by the chromia scale and possibly the reaction layer. The grown scale as well as the 

reaction layer are thus electrically very similar between the four coatings. Whereas the coated 

samples differ from the uncoated sample, reflecting that certainly the electrical properties of the 

spinel type reaction layer differ and possibly also the properties of the chromia below the reaction 

layer. The electrical properties of chromia is highly dependant on minute amounts of foreign impurity 

cations dissolved in the structure and reported conductivities of chromia consequently show a large 

scatter [64]. 

The electrical performance of the coatings is only one important factor for stack performance. 

Another contribution to the stack degradation is chromium poisoning of the SOFC/SOEC oxygen 

electrodes [65,66]. At high pO2, in the presence of steam, chromium can form volatile species that 

can react with the cathodes lowering their electrochemical performance [67,68]. Chromium diffusion 



and the chromium retention capabilities of the coating can to some extent be assessed by the post-

mortem microstructural analysis of the cross sections. 

Post mortem analysis: 

Cross section images of the MCO coated and uncoated Crofer 22 APU after the ASR measurement are 

shown in Figure 6. All coated samples had very similar microstructure. Also both sides of all samples 

were very similar, i.e. current flow direction had no noticeable effect on the oxide formation or on 

the coating microstructure after the test. In Figure 6 A-C several interesting features are visible. The 

coatings have densified near the oxide interface, forming a 2-3 µm thick, continuous and dense layer. 

This reaction layer is very beneficial for corrosion protection as it significantly retards chromium 

diffusion from the chromia scale to the coating and further out. Chromia on coated samples, as 

visible in Figure 6C, is around 1 µm thick after 5300 hours at 750°C. This thickness after a relatively 

long measurement time can be regarded as satisfactory and far from possible scale 

breakdown/spallation due to mechanical stresses [69,70]. 

Pronounced “internal” corrosion occurred in many places beneath the surface oxide scale. In 

addition to the normally present TiO2 internal oxides, visible as evenly distributed small spots up to a 

depth of 8 µm from the oxide scale – steel interface, large internal oxide with diameters in the range 

of 2-4 µm are noticed. These internal oxidation products are distributed almost across the entire 

cross section and are present in all coated samples. They are observed 1 µm beneath the chromia 

and are observed on both sides of the coated samples. These oxides have a MnCr2O4 stoichiometry 

and their presence has been reported previously on MCO coated Crofer 22 APU [71]. 



 

Figure 6. SEM images of oxidized MCO coated samples (A-C) and uncoated steel. Pictures from three different 

locations are reproduced to illustrate the variation of thickness (D-F). 

In Figure 6D-F, cross sections of the uncoated Crofer 22 APU sample are reproduced together with 

the LSM particles from the contacting plate. Here, oxide scale is evidently thicker than on the coated 

samples with a varying thickness between 2 to 4 µm, shown in Figure 6E and 6F. Small TiO2 internal 

corrosion products are also visible but there are only few spots with larger internal corrosion 

products present. This happens for a normal Crofer 22 APU typically along grain boundaries. The 

shape of these particles is however different from the internal oxides present in the coated samples. 

By comparison of the coated and uncoated samples, a beneficial effect of the MCO and the MCFO 

spinel on lowering corrosion rate is noticed: the thermally grown oxide scale (chromia) on the 

uncoated sample is 2-3 times thcker than on the coated samples. This results in a considerable 

improvement in the expected lifetime of the interconnect. 

In addition to electrically limited lifetime, another requirement to the interconnect is given by 

mechanical properties of the steel/oxide/coating structure [72,73]. Due to differences in thermal 

expansion coeficient of different layers, thermal stresses will arise during heating and cooling, and 

when some critical thickness is reached, it will lead to cracking or delamination of the scale. The risk 



of mechanical failure in the scale in a simple model increase in direct proportion to the scale 

thickness as the elastic energy stored in the scale, either due to growth stresses or due to TEC 

mismatches, is proportional to oxide thickness. 

Taking into account oxide thickness measured on the coated and oxidized samples (~1 µm) and the 

oxidation time (5500 hours), the corrosion rate can be approximately calculated (assuming Wagner-

type behavior: h2~kpt, where h – oxide thickness, kp – corrosion rate, t – oxidation time). Although 

this should be calculated based on several points measured over time, here it will be used only for 

some rough estimations. This corrosion rate, can be used to estimate the expected oxide thickness 

after 40000 hours of operation. Thus calculated thicknesses are ~3 µm after 40000 hours operation 

at 750°C (compared to 1 µm after 5500h). This thickness is acceptable from the mechanical point of 

view, it should not cause any problems with cracking and delamination of the oxide scale, as 

interface toughness is expected to be able to withstand possible energy releases from detaching a 

scale of this thickness (given the TEC mismatch). Also well adhering scales up to much higher 

thicknesses ~6-8 µm have indeed been observed on Crofer 22 APU when oxidized at higher 

temperatures [12,74]. 

Elemental analysis maps for O, Cr, Co, Mn and Fe, obtained by energy dispersive x-ray analysis of the 

MCO coated sample together with a SEM image are shown in Figure 7. In comparison to the coating, 

oxygen concentration is visibly higher in the internal oxide and the oxide formed on the steel/coating 

interface. Chromium rich oxide is visible in this interface, however the chromium concentration is 

lower in the internal oxides. Almost no chromium is detected in the coating. Integrated area analysis 

of the coating have shown a maximum of 0.5 at.% Cr in the coating, however this is within the EDS 

detector error. Point analysis of the coating, has shown that the composition of the coating after the 

test is: Co/Mn/O/Cr/Fe : 30.3/17.2/51.4/0.4/0.8 at.% respectively. In comparison the starting powder 

and the as-prepared coating, the spinel got enriched in Mn. The ratio of Co to Mn is now 1.76, 

instead of the initial value of 2. It might point to the diffusion of Mn either from the steel or from the 



LSM contact layer. The densified coating next to the interface has the same composition as the rest 

of the coating, no excessive reaction with chromium and manganese has been detected (within 

detection accuracy of the EDS). The iron map shows clearly the spots of the internal oxidation 

products, which contain no iron. On the base of the obtained EDS results, it is confirmed that a 2-

4 µm thick dense reaction zone contains less than 1 at.% Cr and thus reduces outward Cr diffusion at 

these conditions. 

In case of a pure Co spinel (with LSM layer on top) used on the Crofer 22 APU [75], also a dense 

reacton layer is observed, but it was observed to be enriched both with manganese and chromium 

(~10 at.% of Cr and ~8 at.% Mn). Presence of chromium in this reaction layer causes further outward 

diffusion of chromium to the surface and this coating is likely to be less protective towards Cr-

poisoning of the electrodes. By adding manganese to the cobalt spinel, formation of a more 

protective coating is achieved. 

 

Figure 7. SEM (A) and EDS (B-F) elemental analysis of MCO sample after 5300 hours of oxidation at 750°C. 

 



Based on the performed EDS analysis on the coated samples, it is shown that the initially relatively 

porous spinel coating densified next to the oxide/steel during the high temperature exposure (750°C) 

and succesfuly blocked chromium outward diffusion. The results presented in this work indicate that 

the deposition method does not play a crucial role in the preparation of spinel coatings. By formation 

of a dense reaction layer, when in contact with the oxide or the alloy, a spinel has a tendency to 

densify by itself and form a protective and well conducting layer of very low Cr permeability. For the 

here applied preparation method, the high temperature sintering and/or reduction steps can be 

omitted thus reducing production costs for coating of interconnects. As described by Akanda et al. 

[76], the reduction treatment in the fabrication of the spinel coated interconnects contributes with 

~20% of the overall coating cost. Additionally, no influence of thickness has been found in this work; 

increasing thickness from 30 µm to 50 µm makes no difference in protective behavior. The presence 

of a porous but highly reactive layer that can udergo reaction and densification is enough to provide 

a protective action on the interconnect as deemed based on the quantities here evaluated. 

The formation of the Mn,Co reactive layer is schematically presented in a simplified model in 

Figure 8. The initially porous coating deposited on the steel after heat treatment (oxidation) densifies 

on top of the chromia scale. In the early stage of oxidation, reaction layer forms simulatenously with 

chromia. It must draw Mn and Co from the porous coating and Mn from the steel. This reaction layer, 

when formed, strongly retards outward chromium diffusion protecting the porous coating and other 

layers. Up to 1 at.% of Cr can be found in the reaction layer after the long exposure time. Similar 

model has been presented by Magdefrau et al. [71]. In their case, the reaction layer contained large 

amount of Cr (after 1000 hours at 800°C Mn/Co/Cr ratio was 7/4/3) and was being continously 

enriched in Cr, forming a mixed Mn,Co,Cr spinel with low electrical conductivity. In our case, only ~1 

at.% of Cr diffuses into Mn,Co reaction layer after ~5000 hours. Formation of this dense reactive 

layer with low Cr content is essential for ensuring protective properties of initially porous coatings. 



Development of the dense and protective Mn,Co spinel layer might be dependent on initial 

microstructure, grain size and thermal treatment. In this work prepared layers were quite porous, 

but with small grain size and additionally were impregnated, which created nanoparticles of the 

spinel. We believe that the presence of the nitrate precursors of Co and Mn improve the formation 

of a dense spinel layer at the steel-coating interface. Unfortunately, samples with no infiltration of 

the nitrates were too fragile to include them in the experiments, thus no direct comparison could be 

made in this study. 

 

Figure 8. Schematic presentation (A) and micrographs (B) of formation of the reactive layer and (C-D) fluxes of 

ions across the substrate/oxide/reaction layer/coating. 

Conclusions 

In this work MnCo2O4 and MnCo1.8Fe0.2O4 protective coatings were prepared on Crofer 22 APU steel. 

Two coating thicknesses were analyzed (30 µm and 50 µm). The fabrication of the coatings was 

based on firstly preparing a porous matrix and then impregnation with the coating precursor, 

expected to increase sintering activity/reactivity such that a high temperature densification step 

could be avoided. Coatings were tested electrically for 5300 hours at 750°C. 

All coated samples show very similar behavior: there are no effects of composition nor thickness on 

the protective action as evaluated by the ASR increase and from post-mortem micrographs. The ASR 

of the coated samples increases ~4 times slower than for the uncoated sample. Starting from 



~15 mΩ cm2, the average rate of increase for the coated samples was ~0.3 mΩ cm2/1000h. Neither 

the composition nor the thickness of the protective coating had a measurable influence on electrical 

conductivity. Assuming a linear increase of the ASR over time, obtained results would allow 40000 

hours operation with the final ASR level well below 30 mΩ cm2. 

Post mortem analysis shows, that though the coatings were initially very porous, they densified near 

the thermally grown oxide interface. A dense, 2-4 µm thick layer was formed that blocked or at least 

retards very significantly outward chromium diffusion. Only a very small amount of chromium 

(~0.5 at.%) can be found in the coating after ~8 months oxidation. The spinel coating also slowed 

down the formation of the chromia scale. Its average thickness for the coated samples was between 

1 – 2 µm whereas for the uncoated samples the oxide thickness was between 2 – 4 µm. For all of the 

coated samples, a large amount of internal oxides was found in the steel. In contrast to some reports 

in literature, we found here that no heat treatment at temperatures significantly above 750°C are 

necessary to obtain a protective action of the coating. 

The results show that even initially porous manganese-cobalt spinel coatings can be highly protective 

for the steel used as SOFC/SOEC interconnect. They can lower the growth rate of the chromia scale 

and effectively block chromium diffusion and ensure good electrical properties over prolonged time. 
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