60 research outputs found

    Generalized Rosenfeld scalings for tracer diffusivities in not-so-simple fluids: Mixtures and soft particles

    Full text link
    Rosenfeld [Phys. Rev. A 15, 2545 (1977)] noticed that casting transport coefficients of simple monatomic, equilibrium fluids in specific dimensionless forms makes them approximately single-valued functions of excess entropy. This has predictive value because, while the transport coefficients of dense fluids are difficult to estimate from first principles, excess entropy can often be accurately predicted from liquid-state theory. Here, we use molecular simulations to investigate whether Rosenfeld's observation is a special case of a more general scaling law relating mobility of particles in mixtures to excess entropy. Specifically, we study tracer diffusivities, static structure, and thermodynamic properties of a variety of one- and two-component model fluid systems with either additive or non-additive interactions of the hard-sphere or Gaussian-core form. The results of the simulations demonstrate that the effects of mixture concentration and composition, particle-size asymmetry and additivity, and strength of the interparticle interactions in these fluids are consistent with an empirical scaling law relating the excess entropy to a new dimensionless (generalized Rosenfeld) form of tracer diffusivity, which we introduce here. The dimensionless form of the tracer diffusivity follows from knowledge of the intermolecular potential and the transport / thermodynamic behavior of fluids in the dilute limit. The generalized Rosenfeld scaling requires less information, and provides more accurate predictions, than either Enskog theory or scalings based on the pair-correlation contribution to the excess entropy. As we show, however, it also suffers from some limitations, especially for systems that exhibit significant decoupling of individual component tracer diffusivities.Comment: 15 pages, 10 figure

    Relationship between Structure, Entropy and Diffusivity in Water and Water-like Liquids

    Full text link
    Anomalous behaviour of the excess entropy (SeS_e) and the associated scaling relationship with diffusivity are compared in liquids with very different underlying interactions but similar water-like anomalies: water (SPC/E and TIP3P models), tetrahedral ionic melts (SiO2_2 and BeF2_2) and a fluid with core-softened, two-scale ramp (2SRP) interactions. We demonstrate the presence of an excess entropy anomaly in the two water models. Using length and energy scales appropriate for onset of anomalous behaviour, the density range of the excess entropy anomaly is shown to be much narrower in water than in ionic melts or the 2SRP fluid. While the reduced diffusivities (DD^*) conform to the excess entropy scaling relation, D=Aexp(αSe)D^* =A\exp (\alpha S_e) for all the systems (Y. Rosenfeld, Phys. Rev. A {\bf 1977}, {\it 15}, 2545), the exponential scaling parameter, α\alpha, shows a small isochore-dependence in the case of water. Replacing SeS_e by pair correlation-based approximants accentuates the isochore-dependence of the diffusivity scaling. Isochores with similar diffusivity scaling parameters are shown to have the temperature dependence of the corresponding entropic contribution. The relationship between diffusivity, excess entropy and pair correlation approximants to the excess entropy are very similar in all the tetrahedral liquids.Comment: 24 pages, 4 figures, to be published in Journal of Physical Chemistry

    Testing "microscopic" theories of glass-forming liquids

    Full text link
    We assess the validity of "microscopic" approaches of glass-forming liquids based on the sole k nowledge of the static pair density correlations. To do so we apply them to a benchmark provided by two liquid models that share very similar static pair density correlation functions while disp laying distinct temperature evolutions of their relaxation times. We find that the approaches are unsuccessful in describing the difference in the dynamical behavior of the two models. Our study is not exhausti ve, and we have not tested the effect of adding corrections by including for instance three-body density correlations. Yet, our results appear strong enough to challenge the claim that the slowd own of relaxation in glass-forming liquids, for which it is well established that the changes of the static structure factor with temperature are small, can be explained by "microscopic" appr oaches only requiring the static pair density correlations as nontrivial input.Comment: 10 pages, 7 figs; Accepted to EPJE Special Issue on The Physics of Glasses. Arxiv version contains an addendum to the appendix which does not appear in published versio

    Low level constraints on dynamic contour path integration

    Get PDF
    Contour integration is a fundamental visual process. The constraints on integrating discrete contour elements and the associated neural mechanisms have typically been investigated using static contour paths. However, in our dynamic natural environment objects and scenes vary over space and time. With the aim of investigating the parameters affecting spatiotemporal contour path integration, we measured human contrast detection performance of a briefly presented foveal target embedded in dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing consecutively towards the fovea, followed by the 'target' bar) in four experiments. The data showed that participants' target detection performance was relatively unchanged when individual contour elements were separated by up to 2° spatial gap or 200ms temporal gap. Randomising the luminance contrast or colour of the predictors, on the other hand, had similar detrimental effect on grouping dynamic contour path and subsequent target detection performance. Randomising the orientation of the predictors reduced target detection performance greater than introducing misalignment relative to the contour path. The results suggest that the visual system integrates dynamic path elements to bias target detection even when the continuity of path is disrupted in terms of spatial (2°), temporal (200ms), colour (over 10 colours) and luminance (-25% to 25%) information. We discuss how the findings can be largely reconciled within the functioning of V1 horizontal connections

    Cortical Modulation of the Transient Visual Response at Thalamic Level: A TMS Study

    Get PDF
    The transient visual response of feline dorsal lateral geniculate nucleus (dLGN) cells was studied under control conditions and during the application of repetitive transcranial magnetic stimulation at 1 Hz (rTMS@1Hz) on the primary visual cortex (V1). The results show that rTMS@1Hz modulates the firing mode of Y cells, inducing an increase in burst spikes and a decrease in tonic firing. On the other hand, rTMS@1Hz modifies the spatiotemporal characteristics of receptive fields of X cells, inducing a delay and a decrease of the peak response, and a change of the surround/center amplitude ratio of RF profiles. These results indicate that V1 controls the activity of the visual thalamus in a different way in the X and Y pathways, and that this feedback control is consistent with functional roles associated with each cell type

    Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects

    Get PDF
    Our understanding of the neural underpinnings of perception is largely built upon studies employing 2-dimensional (2D) planar images. Here we used slow event-related functional imaging in humans to examine whether neural populations show a characteristic repetition-related change in haemodynamic response for real-world 3-dimensional (3D) objects, an effect commonly observed using 2D images. As expected, trials involving 2D pictures of objects produced robust repetition effects within classic object-selective cortical regions along the ventral and dorsal visual processing streams. Surprisingly, however, repetition effects were weak, if not absent on trials involving the 3D objects. These results suggest that the neural mechanisms involved in processing real objects may therefore be distinct from those that arise when we encounter a 2D representation of the same items. These preliminary results suggest the need for further research with ecologically valid stimuli in other imaging designs to broaden our understanding of the neural mechanisms underlying human vision

    Excess-entropy scaling in supercooled binary mixtures

    Get PDF
    Supercooled liquids near the glass transition show remarkable non-Arrhenius transport phenomena, whose origin is yet to be clarified. Here, the authors use GPU molecular dynamics simulations for various binary mixtures in the supercooled regime to show the validity of a quasiuniversal excess-entropy scaling relation for viscosity and diffusion
    corecore