140 research outputs found

    On the Physics of Size Selectivity

    Full text link
    We demonstrate that two mechanisms used by biological ion channels to select particles by size are driven by entropy. With uncharged particles in an infinite cylinder, we show that a channel that attracts particles is small-particle selective and that a channel that repels water from the wall is large-particle selective. Comparing against extensive density-functional theory calculations of our model, we find that the main physics can be understood with surprisingly simple bulk models that neglect the confining geometry of the channel completely.Comment: 4 pages, 3 figures, Phys. Rev. Lett. (accepted

    Membrane properties of Ranvier nodes from South American toads frogs (Bufo marinus ictericus and Leptodactylus ocellatus)

    Get PDF
    Estudaram-se propriedades eletrofisiológicas de membranas excitáveis em algusn anfíbios do Brasil. O presente trabalho refere-se aos resultados obtidos em nódulos de Ranvier de fibras motoras e sensoriais isoladas de Bufo marinus ictericus e Leptodactylus ocellatus. Empregou-se o método desenvolvido por Nonner (1969)

    Block of endplate channels by permeant cations in frog skeletal muscle

    Get PDF
    Motor endplates of frog semitendinosus muscles were studied under voltage clamp. Current fluctuations by iontophoretic application of acetylcholine were analyzed to give the elementary conductance, γ, and mean open time, τ, of endplate channels. Total replacement of the external Na+ ion by several other metal ions and by many permanent organic cations changed both γ and τ. Except with NH4 + ions, the γ values with foreign test ions were all smaller than expected from the independence relation and their previously measured permeability ratios. The more hydrophobic ions gave the smallest γ values. Foreign permeant cations also depress γ when mixed with Na+ ions. These effects could be interpreted in terms of binding of ions to a saturable site within the endplate channel as they pass through. The site for organic ions would have a hydrophobic component. Similar evidence is given for a metal ion binding site on the cytoplasmic end of the channel accessible to internal ions. Most foreign cations also shortened τ when applied externally. The changes of gating did not seem to be correlated with changes in γ. Thus there is no evidence for control of τ by ions bound within the pore

    Langevin Trajectories between Fixed Concentrations

    Full text link
    We consider the trajectories of particles diffusing between two infinite baths of fixed concentrations connected by a channel, e.g. a protein channel of a biological membrane. The steady state influx and efflux of Langevin trajectories at the boundaries of a finite volume containing the channel and parts of the two baths is replicated by termination of outgoing trajectories and injection according to a residual phase space density. We present a simulation scheme that maintains averaged fixed concentrations without creating spurious boundary layers, consistent with the assumed physics

    Scaling in Complex Systems: Analytical Theory of Charged Pores

    Full text link
    In this paper we find an analytical solution of the equilibrium ion distribution for a toroidal model of a ionic channel, using the Perfect Screening Theorem (PST). The ions are charged hard spheres, and are treated using a variational Mean Spherical Approximation (VMSA) . Understanding ion channels is still a very open problem, because of the many exquisite tuning details of real life channels. It is clear that the electric field plays a major role in the channel behaviour, and for that reason there has been a lot of work on simple models that are able to provide workable theories. Recently a number of interesting papers have appeared that discuss models in which the effect of the geometry, excluded volume and non-linear behaviour is considered. We present here a 3D model of ionic channels which consists of a charged, deformable torus with a circular or elliptical cross section, which can be flat or vertical (close to a cylinder). Extensive comparisons to MC simulations were performed. The new solution opens new possibilities, such as studying flexible pores, and water phase transformations inside the pores using an approach similar to that used on flat crystal surfaces

    The cell adhesion molecule L1 regulates the expression of choline acetyltransferase and the development of septal cholinergic neurons

    Get PDF
    Mutations in the L1 gene cause severe brain malformations and mental retardation. We investigated the potential roles of L1 in the regulation of choline acetyltransferase (ChAT) and in the development of septal cholinergic neurons, which are known to project to the hippocampus and play key roles in cognitive functions. Using stereological approaches, we detected significantly fewer ChAT-positive cholinergic neurons in the medial septum and vertical limb of the diagonal band of Broca (MS/VDB) of 2-week-old L1-deficient mice compared to wild-type littermates (1644 ± 137 vs. 2051 ± 165, P = 0.038). ChAT protein levels in the septum were 53% lower in 2-week-old L1-deficient mice compared to wild-type littermates. ChAT activity in the septum was significantly reduced in L1-deficient mice compared to wild-type littermates at 1 (34%) and 2 (40%) weeks of age. In vitro, increasing doses of L1-Fc induced ChAT activity in septal neurons with a significant linear trend (*P = 0.0065). At 4 weeks of age in the septum and at all time points investigated in the caudate-putamen (CPu), the number of ChAT-positive neurons and the levels of ChAT activity were not statistically different between L1-deficient mice and wild-type littermates. The total number of cells positive for the neuronal nuclear antigen (NeuN) in the MS/VDB and CPu was not statistically different in L1-deficient mice compared to wild-type littermates, and comparable expression of the cell cycle marker Ki67 was observed. Our results indicate that L1 is required for the timely maturation of septal cholinergic neurons and that L1 promotes the expression and activity of ChAT in septal neurons

    Poisson-Nernst-Planck Systems for Narrow Tubular-like Membrane Channels

    Full text link
    We study global dynamics of the Poisson-Nernst-Planck (PNP) system for flows of two types of ions through a narrow tubular-like membrane channel. As the radius of the cross-section of the three-dimensional tubular-like membrane channel approaches zero, a one-dimensional limiting PNP system is derived. This one-dimensional limiting system differs from previous studied one-dimensional PNP systems in that it encodes the defining geometry of the three-dimensional membrane channel. To justify this limiting process, we show that the global attractors of the three-dimensional PNP systems are upper semi-continuous to that of the limiting PNP system. We then examine the dynamics of the one-dimensional limiting PNP system. For large Debye number, the steady-state of the one-dimensional limiting PNP system is completed analyzed using the geometric singular perturbation theory. For a special case, an entropy-type Lyapunov functional is constructed to show the global, asymptotic stability of the steady-state

    A Structural Model of the Pore-Forming Region of the Skeletal Muscle Ryanodine Receptor (RyR1)

    Get PDF
    Ryanodine receptors (RyRs) are ion channels that regulate muscle contraction by releasing calcium ions from intracellular stores into the cytoplasm. Mutations in skeletal muscle RyR (RyR1) give rise to congenital diseases such as central core disease. The absence of high-resolution structures of RyR1 has limited our understanding of channel function and disease mechanisms at the molecular level. Here, we report a structural model of the pore-forming region of RyR1. Molecular dynamics simulations show high ion binding to putative pore residues D4899, E4900, D4938, and D4945, which are experimentally known to be critical for channel conductance and selectivity. We also observe preferential localization of Ca2+ over K+ in the selectivity filter of RyR1. Simulations of RyR1-D4899Q mutant show a loss of preference to Ca2+ in the selectivity filter as seen experimentally. Electrophysiological experiments on a central core disease mutant, RyR1-G4898R, show constitutively open channels that conduct K+ but not Ca2+. Our simulations with G4898R likewise show a decrease in the preference of Ca2+ over K+ in the selectivity filter. Together, the computational and experimental results shed light on ion conductance and selectivity of RyR1 at an atomistic level
    corecore