7,459 research outputs found

    Twisted topological structures related to M-branes II: Twisted Wu and Wu^c structures

    Full text link
    Studying the topological aspects of M-branes in M-theory leads to various structures related to Wu classes. First we interpret Wu classes themselves as twisted classes and then define twisted notions of Wu structures. These generalize many known structures, including Pin^- structures, twisted Spin structures in the sense of Distler-Freed-Moore, Wu-twisted differential cocycles appearing in the work of Belov-Moore, as well as ones introduced by the author, such as twisted Membrane and twisted String^c structures. In addition, we introduce Wu^c structures, which generalize Pin^c structures, as well as their twisted versions. We show how these structures generalize and encode the usual structures defined via Stiefel-Whitney classes.Comment: 20 page

    On the new approach to variable separation in the time-dependent Schr\"odinger equation with two space dimensions

    Full text link
    We suggest an effective approach to separation of variables in the Schr\"odinger equation with two space variables. Using it we classify inequivalent potentials V(x1,x2)V(x_1,x_2) such that the corresponding Schr\" odinger equations admit separation of variables. Besides that, we carry out separation of variables in the Schr\" odinger equation with the anisotropic harmonic oscillator potential V=k1x12+k2x22V=k_1x_1^2+k_2x_2^2 and obtain a complete list of coordinate systems providing its separability. Most of these coordinate systems depend essentially on the form of the potential and do not provide separation of variables in the free Schr\" odinger equation (V=0V=0).Comment: 21 pages, latex, to appear in the "Journal of Mathematical Physics" (1995

    Tropical seagrass-associated macroalgae distributions and trends relative to water quality

    Get PDF
    Tropical coastal marine ecosystems including mangroves, seagrass beds and coral reef communities are undergoing intense degradation in response to natural and human disturbances, therefore, understanding the causes and mechanisms present challenges for scientist and managers. In order to protect our marine resources, determining the effects of nutrient loads on these coastal systems has become a key management goal. Data from monitoring programs were used to detect trends of macroalgae abundances and develop correlations with nutrient availability, as well as forecast potential responses of the communities monitored. Using eight years of data (1996–2003) from complementary but independent monitoring programs in seagrass beds and water quality of the Florida Keys National Marine Sanctuary (FKNMS), we: (1) described the distribution and abundance of macroalgae groups; (2) analyzed the status and spatiotemporal trends of macroalgae groups; and (3) explored the connection between water quality and the macroalgae distribution in the FKNMS. In the seagrass beds of the FKNMS calcareous green algae were the dominant macroalgae group followed by the red group; brown and calcareous red algae were present but in lower abundance. Spatiotemporal patterns of the macroalgae groups were analyzed with a non-linear regression model of the abundance data. For the period of record, all macroalgae groups increased in abundance (Abi) at most sites, with calcareous green algae increasing the most. Calcareous green algae and red algae exhibited seasonal pattern with peak abundances (Φi) mainly in summer for calcareous green and mainly in winter for red. Macroalgae Abi and long-term trend (mi) were correlated in a distinctive way with water quality parameters. Both the Abi and mi of calcareous green algae had positive correlations with NO3−, NO2−, total nitrogen (TN) and total organic carbon (TOC). Red algae Abi had a positive correlation with NO2−, TN, total phosphorus and TOC, and the mi in red algae was positively correlated with N:P. In contrast brown and calcareous red algae Abi had negative correlations with N:P. These results suggest that calcareous green algae and red algae are responding mainly to increases in N availability, a process that is happening in inshore sites. A combination of spatially variable factors such as local current patterns, nutrient sources, and habitat characteristics result in a complex array of the macroalgae community in the seagrass beds of the FKNMS

    Bohm and Einstein-Sasaki Metrics, Black Holes and Cosmological Event Horizons

    Get PDF
    We study physical applications of the Bohm metrics, which are infinite sequences of inhomogeneous Einstein metrics on spheres and products of spheres of dimension 5 <= d <= 9. We prove that all the Bohm metrics on S^3 x S^2 and S^3 x S^3 have negative eigenvalue modes of the Lichnerowicz operator and by numerical methods we establish that Bohm metrics on S^5 have negative eigenvalues too. We argue that all the Bohm metrics will have negative modes. These results imply that higher-dimensional black-hole spacetimes where the Bohm metric replaces the usual round sphere metric are classically unstable. We also show that the stability criterion for Freund-Rubin solutions is the same as for black-hole stability, and hence such solutions using Bohm metrics will also be unstable. We consider possible endpoints of the instabilities, and show that all Einstein-Sasaki manifolds give stable solutions. We show how Wick rotation of Bohm metrics gives spacetimes that provide counterexamples to a strict form of the Cosmic Baldness conjecture, but they are still consistent with the intuition behind the cosmic No-Hair conjectures. We show how the Lorentzian metrics may be created ``from nothing'' in a no-boundary setting. We argue that Lorentzian Bohm metrics are unstable to decay to de Sitter spacetime. We also argue that noncompact versions of the Bohm metrics have infinitely many negative Lichernowicz modes, and we conjecture a general relation between Lichnerowicz eigenvalues and non-uniqueness of the Dirichlet problem for Einstein's equations.Comment: 53 pages, 11 figure

    A spacetime characterization of the Kerr metric

    Full text link
    We obtain a characterization of the Kerr metric among stationary, asymptotically flat, vacuum spacetimes, which extends the characterization in terms of the Simon tensor (defined only in the manifold of trajectories) to the whole spacetime. More precisely, we define a three index tensor on any spacetime with a Killing field, which vanishes identically for Kerr and which coincides in the strictly stationary region with the Simon tensor when projected down into the manifold of trajectories. We prove that a stationary asymptotically flat vacuum spacetime with vanishing spacetime Simon tensor is locally isometric to Kerr. A geometrical interpretation of this characterization in terms of the Weyl tensor is also given. Namely, a stationary, asymptotically flat vacuum spacetime such that each principal null direction of the Killing form is a repeated principal null direction of the Weyl tensor is locally isometric to Kerr.Comment: 23 pages, No figures, LaTeX, to appear in Classical and Quantum Gravit

    Investigation, Development, and Evaluation of Performance Proving for Fault-tolerant Computers

    Get PDF
    A number of methodologies for verifying systems and computer based tools that assist users in verifying their systems were developed. These tools were applied to verify in part the SIFT ultrareliable aircraft computer. Topics covered included: STP theorem prover; design verification of SIFT; high level language code verification; assembly language level verification; numerical algorithm verification; verification of flight control programs; and verification of hardware logic

    The Distance of the Gamma-ray Binary 1FGL J1018.6-5856

    Full text link
    The recently discovered gamma-ray binary 1FGL J1018.6-5856 has a proposed optical/near-infrared (OIR) counterpart 2MASS 10185560-5856459. We present Stromgren photometry of this star to investigate its photometric variability and measure the reddening and distance to the system. We find that the gamma-ray binary has E(B-V) = 1.34 +/- 0.04 and d = 5.4^+4.6_-2.1 kpc. While E(B-V) is consistent with X-ray observations of the neutral hydrogen column density, the distance is somewhat closer than some previous authors have suggested.Comment: Accepted to PAS

    New Results in Sasaki-Einstein Geometry

    Full text link
    This article is a summary of some of the author's work on Sasaki-Einstein geometry. A rather general conjecture in string theory known as the AdS/CFT correspondence relates Sasaki-Einstein geometry, in low dimensions, to superconformal field theory; properties of the latter are therefore reflected in the former, and vice versa. Despite this physical motivation, many recent results are of independent geometrical interest, and are described here in purely mathematical terms: explicit constructions of infinite families of both quasi-regular and irregular Sasaki-Einstein metrics; toric Sasakian geometry; an extremal problem that determines the Reeb vector field for, and hence also the volume of, a Sasaki-Einstein manifold; and finally, obstructions to the existence of Sasaki-Einstein metrics. Some of these results also provide new insights into Kahler geometry, and in particular new obstructions to the existence of Kahler-Einstein metrics on Fano orbifolds.Comment: 31 pages, no figures. Invited contribution to the proceedings of the conference "Riemannian Topology: Geometric Structures on Manifolds"; minor typos corrected, reference added; published version; Riemannian Topology and Geometric Structures on Manifolds (Progress in Mathematics), Birkhauser (Nov 2008
    corecore