1,848 research outputs found

    Yang--Mills Configurations from 3D Riemann--Cartan Geometry

    Get PDF
    Recently, the {\it spacelike} part of the SU(2)SU(2) Yang--Mills equations has been identified with geometrical objects of a three--dimensional space of constant Riemann--Cartan curvature. We give a concise derivation of this Ashtekar type (``inverse Kaluza--Klein") {\it mapping} by employing a (3+1)(3+1)--decomposition of {\it Clifford algebra}--valued torsion and curvature two--forms. In the subcase of a mapping to purely axial 3D torsion, the corresponding Lagrangian consists of the translational and Lorentz {\it Chern--Simons term} plus cosmological term and is therefore of purely topological origin.Comment: 14 pages, preprint Cologne-thp-1994-h1

    Experimental application of LANDSAT to geobotanical prospecting of serpentine outcrops in the central Appalachian Piedmont of North America

    Get PDF
    The use of LANDSAT as a tool for geobotanical prospecting was studied in a 13,137 sq km area from southeastern Pennsylvania to northern Virginia. Vegetation differences between known serpentine and non-sepentine sites were most easily distinguished on early summer images. A multispectral signature was derived from vegetation of two known serpentine sites and a map was produced of 159 similar signatures of vegetation in the study area. Authenticity of the serpentine nature of the mapped sites was checked via geochemical analysis of collected soils from 14% of the sites. Overall success of geobotanical prospecting was about 35% for the total study area. When vegetation distribution was taken into account, the success rate was 67% for the region north of the Potomac, demonstrates the effectiveness of the multispectral satellite for quickly and accurately locating mineral sensitive vegetation communities over vast tracts of land

    On the chiral anomaly in non-Riemannian spacetimes

    Get PDF
    The translational Chern-Simons type three-form coframe torsion on a Riemann-Cartan spacetime is related (by differentiation) to the Nieh-Yan four-form. Following Chandia and Zanelli, two spaces with non-trivial translational Chern-Simons forms are discussed. We then demonstrate, firstly within the classical Einstein-Cartan-Dirac theory and secondly in the quantum heat kernel approach to the Dirac operator, how the Nieh-Yan form surfaces in both contexts, in contrast to what has been assumed previously.Comment: 18 pages, RevTe
    corecore