40,397 research outputs found
Observation of Giant Exchange Bias and Topological Hall Effect in Manganese Nitride Films
Magnetic and magneto-transport properties of manganese nitride films grown by
molecular beam epitaxy have been investigated. Due to the mixed ferrimagnetic
(FI) phase (-phase with TFI ~ 738 K) and the antiferromagnetic
phase (-phase with TN ~ 273 K), we observe magnetization hysteresis
loops with non-zero exchange bias below TN, reaching ~ 0.22 T at 5 K. This
indicates that noncollinear spins exist at the interfaces between two phases,
creating a competition between interfacial Dzyaloshinskii-Moriya (DM) and
exchange interactions. Strikingly, in addition to the normal Hall effect by
Lorentz force and anomalous Hall effect by magnetization, we observe new
contribution namely topological Hall effect below 75 K. This verifies the
existence of topological spin texture, which is the consequence of competing
interactions controlled by both applied field and temperature. Our work
demonstrates that spintronic devices may be fabricated exploiting rich magnetic
properties of different phases.Comment: the main text has 18 pages, 4 figures. And the supporting information
has 3 pages, 2 figure
Automatic Classification of Text Databases through Query Probing
Many text databases on the web are "hidden" behind search interfaces, and
their documents are only accessible through querying. Search engines typically
ignore the contents of such search-only databases. Recently, Yahoo-like
directories have started to manually organize these databases into categories
that users can browse to find these valuable resources. We propose a novel
strategy to automate the classification of search-only text databases. Our
technique starts by training a rule-based document classifier, and then uses
the classifier's rules to generate probing queries. The queries are sent to the
text databases, which are then classified based on the number of matches that
they produce for each query. We report some initial exploratory experiments
that show that our approach is promising to automatically characterize the
contents of text databases accessible on the web.Comment: 7 pages, 1 figur
Solid-state interdiffusion reactions in Ni/Ti and Ni/Zr multilayered thin films
We have performed a comparative transmission electron microscopy study of solid-state interdiffusion reactions in multilayered Ni/Zr and Ni/Ti thin films. The Ni-Zr reaction product was amorphous while the Ni-Ti reaction product was a simple intermetallic compound. Because thermodynamic and chemical properties of these two alloy systems are similar, we suggest kinetic origins for this difference in reaction product
Generalized MICZ-Kepler Problems and Unitary Highest Weight Modules
For each integer , we demonstrate that a -dimensional
generalized MICZ-Kepler problem has an \mr{Spin}(2, 2n+2) dynamical symmetry
which extends the manifest \mr{Spin}(2n+1) symmetry. The Hilbert space of
bound states is shown to form a unitary highest weight \mr{Spin}(2,
2n+2)-module which occurs at the first reduction point in the
Enright-Howe-Wallach classification diagram for the unitary highest weight
modules. As a byproduct, we get a simple geometric realization for such a
unitary highest weight \mr{Spin}(2, 2n+2)-module.Comment: 27 pages, Refs. update
Impact of pairing correlations on the orientation of the nuclear
For the first time, the tilted axis cranking covariant density functional
theory with pairing correlations has been formulated and implemented in a fully
self-consistent and microscopic way to investigate the evolution of the spin
axis and the pairing effects in rotating triaxial nuclei. The measured energy
spectrum and transition probabilities for the Nd-135 yrast band are reproduced
well without any ad hoc renormalization factors when pairing effects are taken
into account. A transition from collective to chiral rotation has been
demonstrated. It is found that pairing correlations introduce additional
admixtures in the single-particle orbitals, and, thus, influence the structure
of tilted axis rotating nuclei by reducing the magnitude of the proton and
neutron angular momenta while merging their direction.Comment: 13 pages, 5 figure
Self-gravitating Yang Monopoles in all Dimensions
The (2k+2)-dimensional Einstein-Yang-Mills equations for gauge group SO(2k)
(or SU(2) for k=2 and SU(3) for k=3) are shown to admit a family of
spherically-symmetric magnetic monopole solutions, for both zero and non-zero
cosmological constant Lambda, characterized by a mass m and a magnetic-type
charge. The k=1 case is the Reissner-Nordstrom black hole. The k=2 case yields
a family of self-gravitating Yang monopoles. The asymptotic spacetime is
Minkowski for Lambda=0 and anti-de Sitter for Lambda<0, but the total energy is
infinite for k>1. In all cases, there is an event horizon when m>m_c, for some
critical mass , which is negative for k>1. The horizon is degenerate when
m=m_c, and the near-horizon solution is then an adS_2 x S^{2k} vacuum.Comment: 16 pp. Extensive revision to include case of non-zero cosmological
constant and implications for adS/CFT. Numerous additional reference
Maximum thickness of amorphous NiZr interlayers formed by a solid-state reaction technique
Formation of the equilibrium intermetallic compound NiZr in sputter deposited Ni/Zr diffusion couples is suppressed by the formation of a metastable amorphous NiZr alloy until a critical thickness of the amorphous NiZr interlayer is reached. The temperature dependence of this critical thickness is studied experimentally. A phenomenological model based on the premise of interfacial heterogeneous nucleation is proposed to understand the evolution of Ni/Zr diffusion couples
Low-distortion Subspace Embeddings in Input-sparsity Time and Applications to Robust Linear Regression
Low-distortion embeddings are critical building blocks for developing random
sampling and random projection algorithms for linear algebra problems. We show
that, given a matrix with and a , with a constant probability, we can construct a low-distortion embedding
matrix \Pi \in \R^{O(\poly(d)) \times n} that embeds \A_p, the
subspace spanned by 's columns, into (\R^{O(\poly(d))}, \| \cdot \|_p);
the distortion of our embeddings is only O(\poly(d)), and we can compute in O(\nnz(A)) time, i.e., input-sparsity time. Our result generalizes the
input-sparsity time subspace embedding by Clarkson and Woodruff
[STOC'13]; and for completeness, we present a simpler and improved analysis of
their construction for . These input-sparsity time embeddings
are optimal, up to constants, in terms of their running time; and the improved
running time propagates to applications such as -distortion
subspace embedding and relative-error regression. For
, we show that a -approximate solution to the
regression problem specified by the matrix and a vector can be
computed in O(\nnz(A) + d^3 \log(d/\epsilon) /\epsilon^2) time; and for
, via a subspace-preserving sampling procedure, we show that a -distortion embedding of \A_p into \R^{O(\poly(d))} can be
computed in O(\nnz(A) \cdot \log n) time, and we also show that a
-approximate solution to the regression problem can be computed in O(\nnz(A) \cdot \log n + \poly(d)
\log(1/\epsilon)/\epsilon^2) time. Moreover, we can improve the embedding
dimension or equivalently the sample size to without increasing the complexity.Comment: 22 page
- …
