389 research outputs found

    Why is the ground state electron configuration for Lithium 1s22s1s^22s ?

    Full text link
    The electronic ground state for Lithium is 1s22s1s^22s, and not 1s22p1s^22p. The traditional argument for why this is so is based on a screening argument that claims that the 2p2p electron is better shielded by the 1s1s electrons, and therefore higher in energy then the configuration that includes the 2s2s electron. We show that this argument is flawed, and in fact the actual reason for the ordering is because the electron-electron interaction energy is higher for the 2p−1s2p-1s repulsion than it is for the 2s−1s2s-1s repulsion.Comment: 4 page

    How many electrons are needed to flip a local spin?

    Full text link
    Considering the spin of a local magnetic atom as a quantum mechanical operator, we illustrate the dynamics of a local spin interacting with a ballistic electron represented by a wave packet. This approach improves the semi-classical approximation and provides a complete quantum mechanical understanding for spin transfer phenomena. Sending spin-polarized electrons towards a local magnetic atom one after another, we estimate the minimum number of electrons needed to flip a local spin.Comment: 3 figure

    Temperature Dependence of the Conductivity Sum Rule in the Normal State due to Inelastic Scattering

    Full text link
    We examine the temperature dependence of the optical sum rule in the normal state due to interactions. To be concrete we adopt a weak coupling approach which uses an electron-boson exchange model to describe inelastic scattering of the electrons with a boson, in the Migdal approximation. While a number of recent works attribute the temperature dependence in the normal state to that which arises in a Sommerfeld expansion, we show that in a wide parameter regime this contribution can be quite small. Instead, most of the temperature dependence arises from the zeroth order term in the `expansion', through the temperature dependence of the spectral function, and the interaction parameters contained therein. For low boson frequencies this circumstance causes a linear T-dependence in the sum rule. We develop some analytical expressions and understanding of the temperature dependence.Comment: 11 pages, 9 figure

    Dynamical properties of the single--hole tt--JJ model on a 32--site square lattice

    Full text link
    We present results of an exact diagonalization calculation of the spectral function A(k,ω)A(\bf k, \omega) for a single hole described by the tt--JJ model propagating on a 32--site square cluster. The minimum energy state is found at a crystal momentum k=(π2,π2){\bf k} = ({\pi\over 2}, {\pi\over 2}), consistent with theory, and our measured dispersion relation agrees well with that determined using the self--consistent Born approximation. In contrast to smaller cluster studies, our spectra show no evidence of string resonances. We also make a qualitative comparison of the variation of the spectral weight in various regions of the first Brillouin zone with recent ARPES data.Comment: 10 pages, 5 postscript figures include

    Intraband Optical Spectral Weight in the presence of a van Hove singularity: application to Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    The Kubo single band sum rule is used to determine the optical spectral weight of a tight binding band with further than nearest neighbour hopping. We find for a wide range of parameters and doping concentrations that the change due to superconductivity at low temperature can be either negative or positive. In contrast, the kinetic energy change is always negative. We use an ARPES determined tight binding parametrization of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} to investigate whether this can account for recent observations of a positive change in the spectral weight due to the onset of superconductivity. With this band structure we find that in the relevant doping regime a straightforward BCS calculation of the optical spectral weight cannot account for the experimental observations.Comment: 10 page 9 figure

    Welfare and Convergence Speed in the Ramsey Model under two Classes of Gorman Preferences

    Get PDF
    Using a one-sector, discrete-time Ramsey model, we analyze and compare the implications for welfare, capital accumulation, and speed of convergence to the steady state of two classes of utility functions that represent Gorman preferences, namely homothetic and Stone\u2013Geary preferences. For identical economies, we show that the preference structure does not affect only the capital dynamics and social welfare but also the speed of convergence to the steady-state equilibrium

    Optical sum rule violation, superfluid weight and condensation energy in the cuprates

    Full text link
    The model of hole superconductivity predicts that the superfluid weight in the zero-frequency δ\delta-function in the optical conductivity has an anomalous contribution from high frequencies, due to lowering of the system's kinetic energy upon entering the superconducting state. The lowering of kinetic energy, mainly in-plane in origin, accounts for both the condensation energy of the superconductor as well as an increased potential energy due to larger Coulomb repulsion in the paired state. It leads to an apparent violation of the conductivity sum rule, which in the clean limit we predict to be substantially larger for in-plane than for c-axis conductivity. However, because cuprates are in the dirty limit for c-axis transport, the sum rule violation is found to be greatly enhanced in the c-direction. The model predicts the sum rule violation to be largest in the underdoped regime and to decrease with doping, more rapidly in the c-direction that in the plane. So far, experiments have detected sum rule violation in c-axis transport in several cuprates, as well as a decrease and disappearance of this violation for increasing doping, but no violation in-plane. We explore the predictions of the model for a wide range of parameters, both in the absence and in the presence of disorder, and the relation with current experimental knowledge.Comment: submitted to Phys.Rev.

    The double well potential in quantum mechanics: a simple, numerically exact formulation

    Full text link
    The double well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of `classical' states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double well potentials that are accessible to the undergraduate student. We describe a method for obtaining the numerically exact eigenenergies and eigenstates for such a model, along with the energies obtained through the Wentzel-Kramers-Brillouin (WKB) approximation. The exact solution is accessible with elementary mathematics, though numerical solutions are required. We also find that the WKB approximation is remarkably accurate, not just for the ground state, but for the excited states as well.Comment: 10 pages, 4 figures; suitable for undergraduate courses in quantum mechanic

    Properties of the superconducting state in a two-band model

    Full text link
    Eliashberg theory is used to investigate the range of thermodynamic properties possible within a two-band model for s-wave superconductivity and to identify signatures of its two-band nature. We emphasize dimensionless BCS ratios (those for the energy gaps, the specific heat jump and the negative of its slope near Tc, the thermodynamic critical field Hc(0), and the normalized slopes of the critical field and the penetration depth near Tc), which are no longer universal even in weak coupling. We also give results for temperature-dependent quantities, such as the penetration depth and the energy gap. Results are presented both for microscopic parameters appropriate to MgB2 and for variations away from these. Strong coupling corrections are identified and found to be significant. Analytic formulas are provided which show the role played by the anisotropy in coupling in some special limits. Particular emphasis is placed on small interband coupling and on the opposite limit of no diagonal coupling. The effect of impurity scattering is considered, particularly for the interband case.Comment: 20 pages, 14 figures, final version accepted in PR
    • …
    corecore