988 research outputs found

    Jahn-Teller stabilization of a "polar" metal oxide surface: Fe3O4(001)

    Get PDF
    Using ab initio thermodynamics we compile a phase diagram for the surface of Fe3O4(001) as a function of temperature and oxygen pressures. A hitherto ignored polar termination with octahedral iron and oxygen forming a wave-like structure along the [110]-direction is identified as the lowest energy configuration over a broad range of oxygen gas-phase conditions. This novel geometry is confirmed in a x-ray diffraction analysis. The stabilization of the Fe3O4(001)-surface goes together with dramatic changes in the electronic and magnetic properties, e.g., a halfmetal-to-metal transition.Comment: 4 pages, 4 figure

    Gamow Shell Model Description of Neutron-Rich Nuclei

    Get PDF
    This work presents the first continuum shell-model study of weakly bound neutron-rich nuclei involving multiconfiguration mixing. For the single-particle basis, the complex-energy Berggren ensemble representing the bound single-particle states, narrow resonances, and the non-resonant continuum background is taken. Our shell-model Hamiltonian consists of a one-body finite potential and a zero-range residual two-body interaction. The systems with two valence neutrons are considered. The Gamow shell model, which is a straightforward extension of the traditional shell model, is shown to be an excellent tool for the microscopic description of weakly bound systems. It is demonstrated that the residual interaction coupling to the particle continuum is important; in some cases, it can give rise to the binding of a nucleus.Comment: 4 pages, More realistic s.p. energies used than in the precedent versio

    Gap width modification on fully screen-printed coplanar Zn|MnO2 batteries

    Get PDF
    Fully printed primary zinc-manganese dioxide (Zn|MnO2) batteries in coplanar configuration were fabricated by sequential screen printing. While electrode dimensions and transferred active masses were kept at constant levels, electrode separating gaps were incrementally enlarged from 1 mm to 5 mm. Calendering of solely zinc anodes increased interparticle contact of active material within the electrodes while the porosity of manganese dioxide based electrodes was maintained by non-calendering. Chronopotentiometry revealed areal capacities for coplanar batteries up to 2.8 mAh cm−2. Galvanostatic electrochemical impedance spectroscopy measurements and short circuit measurements were used to comprehensively characterise the effect of gap width extension on bulk electrolyte resistance and charge transfer resistance values. Linear relationships between nominal gap widths, short circuit currents and internal resistances were evidenced, but showed only minor impact on actual discharge capacities. The findings contradict previous assumptions to minimise gap widths of printed coplanar batteries to a sub-millimetre range in order to retain useful discharge capacities. The results presented in this study may facilitate process transfer of printed batteries to an industrial environment

    Far-infrared absorption in parallel quantum wires with weak tunneling

    Full text link
    We study collective and single-particle intersubband excitations in a system of quantum wires coupled via weak tunneling. For an isolated wire with parabolic confinement, the Kohn's theorem guarantees that the absorption spectrum represents a single sharp peak centered at the frequency given by the bare confining potential. We show that the effect of weak tunneling between two parabolic quantum wires is twofold: (i) additional peaks corresponding to single-particle excitations appear in the absorption spectrum, and (ii) the main absorption peak acquires a depolarization shift. We also show that the interplay between tunneling and weak perpendicular magnetic field drastically enhances the dispersion of single-particle excitations. The latter leads to a strong damping of the intersubband plasmon for magnetic fields exceeding a critical value.Comment: 18 pages + 6 postcript figure

    The Aharonov-Bohm effect for an exciton

    Full text link
    We study theoretically the exciton absorption on a ring shreded by a magnetic flux. For the case when the attraction between electron and hole is short-ranged we get an exact solution of the problem. We demonstrate that, despite the electrical neutrality of the exciton, both the spectral position of the exciton peak in the absorption, and the corresponding oscillator strength oscillate with magnetic flux with a period Φ0\Phi_0---the universal flux quantum. The origin of the effect is the finite probability for electron and hole, created by a photon at the same point, to tunnel in the opposite directions and meet each other on the opposite side of the ring.Comment: 13 RevTeX 3.0 pages plus 4 EPS-figures, changes include updated references and an improved chapter on possible experimental realization

    Gamow Shell Model Description of Weakly Bound Nuclei and Unbound Nuclear States

    Get PDF
    We present the study of weakly bound, neutron-rich nuclei using the nuclear shell model employing the complex Berggren ensemble representing the bound single-particle states, unbound Gamow states, and the non-resonant continuum. In the proposed Gamow Shell Model, the Hamiltonian consists of a one-body finite depth (Woods-Saxon) potential and a residual two-body interaction. We discuss the basic ingredients of the Gamow Shell Model. The formalism is illustrated by calculations involving {\it several} valence neutrons outside the double-magic core: 6−10^{6-10}He and 18−22^{18-22}O.Comment: 19 pages, 20 encapsulated PostScript figure

    Final Report: SIREV - Development of a Functional Model

    Get PDF
    Die Entwicklung eines Funktionsmodells für ein vorausschauendes Radarsystem einschließlich der Integration der Hardware in einen DLR-Hubschrauber und die Entwicklung geeigneter Algorithmen und Software für die Prozessierung wurde durchgeführt. Mit STN Atlas GmbH hat das DLR das System "Sector Imaging Radar for Enhanced Vision" (SIREV) mit IHE Karlsruhe und AeroSensing entwickelt. / Preis: 36,80
    • …
    corecore