45,458 research outputs found

    A decentralized motion coordination strategy for dynamic target tracking

    Get PDF
    This paper presents a decentralized motion planning algorithm for the distributed sensing of a noisy dynamical process by multiple cooperating mobile sensor agents. This problem is motivated by localization and tracking tasks of dynamic targets. Our gradient-descent method is based on a cost function that measures the overall quality of sensing. We also investigate the role of imperfect communication between sensor agents in this framework, and examine the trade-offs in performance between sensing and communication. Simulations illustrate the basic characteristics of the algorithms

    The Insignificance of Global Reheating in the Abell 1068 Cluster: X-Ray Analysis

    Full text link
    We report on a Chandra observation of the massive, medium redshift (z=0.1386) cooling flow cluster Abell 1068. We detect a clear temperature gradient in the X-ray emitting gas from kT ~ 5 keV in the outer part of the cluster down to roughly 2 keV in the core, and a striking increase in the metallicity of the gas toward the cluster center. The total spectrum from the cluster can be fit by a cooling flow model with a total mass deposition rate of 150 solar masses/yr. Within the core (r < 30 kpc), the mass depositon rate of 40 solar masses/yr is comparable to estimates for the star formation rate from optical data. We find an apparent correlation between the cD galaxy's optical isophotes and enhanced metallicity isocontours in the central ~100 kpc of the cluster. We show that the approximate doubling of the metallicity associated with the cD can be plausibly explained by supernova explosions associated with the cD's ambient stellar population and the recent starburst. Finally, we calculate the amount of heating due to thermal conduction and show that this process is unlikely to offset cooling in Abell 1068.Comment: Accepted for publication in ApJ, 26 pages, 12 b+w figures, 3 color figure

    End-to-End Safe Reinforcement Learning through Barrier Functions for Safety-Critical Continuous Control Tasks

    Get PDF
    Reinforcement Learning (RL) algorithms have found limited success beyond simulated applications, and one main reason is the absence of safety guarantees during the learning process. Real world systems would realistically fail or break before an optimal controller can be learned. To address this issue, we propose a controller architecture that combines (1) a model-free RL-based controller with (2) model-based controllers utilizing control barrier functions (CBFs) and (3) on-line learning of the unknown system dynamics, in order to ensure safety during learning. Our general framework leverages the success of RL algorithms to learn high-performance controllers, while the CBF-based controllers both guarantee safety and guide the learning process by constraining the set of explorable polices. We utilize Gaussian Processes (GPs) to model the system dynamics and its uncertainties. Our novel controller synthesis algorithm, RL-CBF, guarantees safety with high probability during the learning process, regardless of the RL algorithm used, and demonstrates greater policy exploration efficiency. We test our algorithm on (1) control of an inverted pendulum and (2) autonomous car-following with wireless vehicle-to-vehicle communication, and show that our algorithm attains much greater sample efficiency in learning than other state-of-the-art algorithms and maintains safety during the entire learning process.Comment: Published in AAAI 201

    Situational reasoning for road driving in an urban environment

    Get PDF
    Robot navigation in urban environments requires situational reasoning. Given the complexity of the environment and the behavior specified by traffic rules, it is necessary to recognize the current situation to impose the correct traffic rules. In an attempt to manage the complexity of the situational reasoning subsystem, this paper describes a finite state machine model to govern the situational reasoning process. The logic state machine and its interaction with the planning system are discussed. The approach was implemented on Alice, Team Caltech’s entry into the 2007 DARPA Urban Challenge. Results from the qualifying rounds are discussed. The approach is validated and the shortcomings of the implementation are identified

    ESO 3060170 -- a massive fossil galaxy group with a heated gas core?

    Full text link
    We present a detailed study of the ESO 3060170 galaxy group combining Chandra, XMM and optical observations. The system is found to be a fossil galaxy group. The group X-ray emission is composed of a central dense cool core (10 kpc in radius) and an isothermal medium beyond the central 10 kpc. The region between 10 and 50 kpc (the cooling radius) has the same temperature as the gas from 50 kpc to 400 kpc although the gas cooling time between 10 and 50 kpc (2 - 6 Gyr) is shorter than the Hubble time. Thus, the ESO 3060170 group does not have a group-sized cooling core. We suggest that the group cooling core may have been heated by a central AGN outburst in the past and the small dense cool core is the truncated relic of a previous cooling core. The Chandra observations also reveal a variety of X-ray features in the central region, including a ``finger'', an edge-like feature and a small ``tail'', all aligned along a north-south axis, as are the galaxy light and group galaxy distribution. The proposed AGN outburst may cause gas ``sloshing'' around the center and produce these asymmetric features. The observed flat temperature profile to 1/3 R_vir is not consistent with the predicted temperature profile in recent numerical simulations. We compare the entropy profile of the ESO 3060170 group with those of three other groups and find a flatter relation than that predicted by simulations involving only shock heating, S \propto r 0.85^{~ 0.85}. This is direct evidence for the importance of non-gravitational processes in group centers. We derive the mass profiles within 1/3 R_vir and find the ESO 3060170 group is the most massive fossil group known (1 - 2 X 1014^{14} M_{\odot}). The M/L ratio of the system, ~ 150 at 0.3 R_vir, is normal.Comment: 17 pages, 12 figures, to appear in ApJ. A high-resolution version can be downloaded from http://cxc.harvard.edu/~msun/esoa.p

    Development of single cell protectors for sealed silver-zinc cells, phase 1

    Get PDF
    A single cell protector (SCP) assembly capable of protecting a single silver-zinc (Ag Zn) battery cell was designed, fabricated, and tested. The SCP provides cell-level protection against overcharge and overdischarge by a bypass circuit. The bypass circuit consists of a magnetic-latching relay that is controlled by the high and low-voltage limit comparators. Although designed specifically for secondary Ag-Zn cells, the SCP is flexible enough to be adapted to other rechargeable cells. Eighteen SCPs were used in life testing of an 18-cell battery. The cells were sealed Ag-Zn system with inorganic separators. For comparison, another 18-cell battery was subjected to identical life test conditions, but with battery-level protection rather than cell-level. An alternative approach to the SCP design in the form of a microprocessor-based system was conceptually designed. The comparison of SCP and microprocessor approaches is also presented and a preferred approach for Ag-Zn battery protection is discussed
    corecore