272 research outputs found

    The Supernova Remnant G11.2-0.3 and its central Pulsar

    Get PDF
    The plerion inside the composite Supernova Remnant G11.2-0.3 appears to be dominated by the magnetic field to an extent unprecedented among well known cases. We discuss its evolution as determined by a central pulsar and the interaction with the surrounding thermal remnant, which in turn interacts with the ambient medium. We find that a plausible scenario exists, where all the observations can be reproduced with rather typical values for the parameters of the system; we also obtain the most likely period for the still undetected pulsar.Comment: 10 pages, to be published on ApJ Letters. Formatted using AASTe

    Syntax circuitry: a mobile game for practicing programming language syntax

    Get PDF
    According to the U.S. Bureau of Labor Statistics [1], computer science professions are among the fastest growing occupations in the U.S., and computer science occupations will add more than half a million new jobs in the next ten years. A similar need for computer professionals is expected in Kazakhstan. Simultaneously, universities in the U.S. and worldwide are seeing poor retention rates in computer science, a major reason being that students often view the early courses in the subject as uninteresting and dull [2]. Game-based learning is one of many techniques proposed to address this issue [2,3,4,5]. We have developed a mobile game that provides an engaging way for students to practice (not learn) the basic syntax of C, C++ and Java (since these languages share the same syntax for basic constructs like declarations, selection and iteration). Learning programming language syntax is a tedious process. Practicing by programming is, of course, ideal, but we believe that a game which is fun to play in their spare time will help students get used to distinguishing correct syntactical constructs quickly

    Measurement of Spectral Breaks in Pulsar Wind Nebulae with Millimeter-wave Interferometry

    Full text link
    We have observed pulsar wind nebulae in the three supernova remnants G11.2-0.3, G16.7+0.1, and G29.7-0.3 at 89 GHz with the Berkeley-Illinois-Maryland Association Array, measuring total flux densities of two of them for comparison with archival data at other frequencies . In G16.7+0.1, we find a break in the spectrum of the PWN at ~26 GHz. In G29.7-0.3, our data suggest a break in the integrated spectrum of the central nebula at ~55 GHz, lower than previously estimated. However, we have found spatial structure in the spectrum of this nebula. The emission to the north of pulsar J1846-0258 has a broken spectrum, with break frequency ~< 100 GHz, consistent with a conventional pulsar-powered nebula. The emission to the south of the pulsar has a near-power-law spectrum from radio to X-rays: this component may be unrelated to the PWN, or may be evidence of asymmetries and/or time evolution in the pulsar's energy output. We present 89 GHz images of each remnant.Comment: 8 pages, including 7 eps figures. ApJ, in pres

    Chandra Observations of the Crab-like Supernova Remnant G21.5-0.9

    Get PDF
    Chandra observations of the Crab-like supernova remnant G21.5-0.9 reveal a compact central core and spectral variations indicative of synchrotron burn-off of higher energy electrons in the inner nebula. The central core is slightly extended, perhaps indicating the presence of an inner wind-shock nebula surrounding the pulsar. No pulsations are observed from the central region, yielding an upper limit of ~40% for the pulsed fraction. A faint outer shell may be the first evidence of the expanding ejecta and blast wave formed in the initial explosion, indicating a composite nature for G21.5-0.9.Comment: 4 pages, 2 figures, formatted with emulateapj, submitted to ApJ

    X-Ray Observations of the supernova remnant G21.5-0.9

    Full text link
    We present the analysis of archival X-ray observations of the supernova remnant (SNR) G21.5-0.9. Based on its morphology and spectral properties, G21.5-0.9 has been classified as a Crab-like SNR. In their early analysis of the CHANDRA calibration data, Slane et al. (2000) discovered a low-surface-brightness, extended emission. They interpreted this component as the blast wave formed in the supernova (SN) explosion. In this paper, we present the CHANDRA analysis using a total exposure of ~150 ksec. We also include ROSAT and ASCA observations. Our analysis indicates that the extended emission is non-thermal -- a result in agreement with XMM observations. The entire remnant of radius ~ 2'.5 is best fitted with a power law model with a photon index steepening away from the center. The total unabsorbed flux in the 0.5-10 keV is 1.1E-10 erg/cm2/s with an 85% contribution from the 40" radius inner core. Timing analysis of the High-Resolution Camera (HRC) data failed to detect any pulsations. We put a 16% upper limit on the pulsed fraction. We derive the physical parameters of the putative pulsar and compare them with those of other plerions (such as the Crab and 3C 58). G21.5-0.9 remains the only plerion whose size in X-rays is bigger than in the radio. Deep radio observations will address this puzzle.Comment: 23 pages including 11 figures and 3 tables; accepted by ApJ June 22, 2001; to appear in Oct 20, 2001 issue of Ap

    A Low Frequency Survey of the Galactic Plane Near l=11 degrees: Discovery of Three New Supernova Remnants

    Full text link
    We have imaged a 1 deg^2 field centered on the known Galactic supernova remnant (SNR) G11.2-0.3 at 74, 330, and 1465 MHz with the Very Large Array radio telescope (VLA) and 235 MHz with the Giant Metrewave Radio Telescope (GMRT). The 235, 330, and 1465 MHz data have a resolution of 25 arcsec, while the 74 MHz data have a resolution of 100 arcsec. The addition of this low frequency data has allowed us to confirm the previously reported low frequency turnover in the radio continuum spectra of the two known SNRs in the field: G11.2-0.3 and G11.4-0.1 with unprecedented precision. Such low frequency turnovers are believed to arise from free-free absorption in ionized thermal gas along the lines of site to the SNRs. Our data suggest that the 74 MHz optical depths of the absorbing gas is 0.56 and 1.1 for G11.2-0.3 and G11.4-0.1, respectively. In addition to adding much needed low frequency integrated flux measurements for two known SNRs, we have also detected three new SNRs: G11.15-0.71, G11.03-0.05, and G11.18+0.11. These new SNRs have integrated spectral indices between -0.44 and -0.80. Because of confusion with thermal sources, the high resolution (compared to previous Galactic radio frequency surveys) and surface brightness sensitivity of our observations have been essential to the identification of these new SNRs. With this study we have more than doubled the number of SNRs within just a 1 deg^2 field of view in the inner Galactic plane. This result suggests that future low frequency observations of the Galactic plane of similar quality may go a long way toward alleviating the long recognized incompleteness of Galactic SNR catalogs.Comment: 31 pages, 9 figures. Figure 7 is in color. Accepted to A

    The Expansion and Radio Spectral Index of G21.5-0.9: Is PSR J1833-1034 the Youngest Pulsar?

    Full text link
    We report on new 5-GHz VLA radio observations of the pulsar-powered supernova remnant G21.5-0.9. These observations have allowed us to make a high-quality radio image of this remnant with a resolution of ~0.7". It has a filamentary structure similar to that seen in the Crab Nebula. Radio structure suggestive of the torus seen around the Crab pulsar is tentatively identified. We also compared the new image with one taken ~15 yr earlier at 1.5 GHz, both to find the expansion speed of the remnant and to make a spectral index image. Between 1991 and 2006, we find that the average expansion rate of the remnant is 0.11 +/- 0.02 %/year, corresponding, for a distance of 5 kpc, to a speed of 910 +/- 160 km/s wrt. the centre of the nebula. Assuming undecelerated expansion, this expansion speed implies that the age of G21.5-0.9 is 870 (+200,-150) yr, which makes PSR J1833-1034 one of the youngest, if not the youngest, known pulsars in the Galaxy.Comment: Accepted for publication in the MNRAS. 8 pages; For an animation showing the expansion of G21.5-0.9, see http://www.yorku.ca/bartel/G21new.html . (The only change in V3 of the preprint is to add the above url

    Chandra Observations of G11.2-0.3: Implications for Pulsar Ages

    Full text link
    We present Chandra X-ray Observatory imaging observations of the young Galactic supernova remnant G11.2-0.3. The image shows that the previously known young 65-ms X-ray pulsar is at position (J2000) RA 18h 11m 29.22s, DEC -19o 25' 27.''6, with 1 sigma error radius 0.''6. This is within 8'' of the geometric center of the shell. This provides strong confirming evidence that the system is younger, by a factor of ~12, than the characteristic age of the pulsar. The age discrepancy suggests that pulsar characteristic ages can be poor age estimators for young pulsars. Assuming conventional spin down with constant magnetic field and braking index, the most likely explanation for the age discrepancy in G11.2-0.3 is that the pulsar was born with a spin period of ~62 ms. The Chandra image also reveals, for the first time, the morphology of the pulsar wind nebula. The elongated hard-X-ray structure can be interpreted as either a jet or a Crab-like torus seen edge on. This adds to the growing list of highly aspherical pulsar wind nebulae and argues that such structures are common around young pulsars.Comment: 16 pages, 3 figures, Accepted for publication in ApJ. For a full resolution version of Fig 1, see http://www.physics.mcgill.ca/~vkaspi/G11.2-0.3/f1.ep

    VEG-04: The Effects of Light Quality on Mizuna Mustard Growth, Nutritional Composition, and Organoleptic Acceptability for a Space Diet

    Get PDF
    Growing fresh, nutritious, palatable produce for crew consumption during spaceflight may provide health-promoting, bioavailable nutrients and enhance the astronaut dietary experience as we move toward longer-duration missions. Tending plants may also serve as a countermeasure for crew psychological stresses associated with spaceflight. However, requirements to support consistent growth of a variety of high quality, nutritious crops under spaceflight environmental conditions remain unclear. This study explores the potential to grow crops for consumption on the International Space Station (ISS) using the Veggie vegetable-production system. VEG-04A and B were two flight tests conducted in 2019 with the leafy green crop mizuna mustard. Mizuna was grown in two Veggie chambers simultaneously, with the chambers set to different red-to-blue light formulations; one Veggie was programmed as "red-rich" and the second as "blue-rich." Light quality is known to impact plant growth, nutrition, microbiology, and organoleptic characteristics on Earth, and the Veggie flight tests examined how these impacts might differ in microgravity. VEG-04A, a 35-day growth test with a single harvest, was initiated in June and harvested in July 2019. At harvest, the astronauts froze half of the edible plant tissue to return to Earth and weighed the remaining half using the Mass Measurement Device (MMD). Weighed samples were then cleaned with produce-sanitizing wipes, and consenting crew members participated in organoleptic evaluation of the fresh produce. The remaining sanitized produce was available for crew consumption as desired. Frozen flight samples were returned at the end of August for microbial and chemical analyses to assess food safety and nutritional quality. No pathogens were detected on VEG-04A flight or ground control samples. On average, bacterial and fungal counts were significantly lower on ground control samples than flight samples. VEG-04B, a 56-day test with multiple harvests from the same plants, assessed sustained productivity. VEG-04B was initiated in October 2019 with three harvests at four, six, and eight weeks after initiation. Challenges with the watering program occurred early during VEG-04A, and several plants failed to survive in both the flight and ground control operations. Thus, prior to VEG-04B, an extra test was conducted to tailor water timing and volumes. This test determined that mizuna grew best if the wicks inside the plant pillow were allowed to dry after plants germinated, reducing persistent water around the stem. The wicks changed from being a conduit for water out of the plant pillow to being a conduit for air into the root zone. This test allowed a fine tuning of methods for VEG-04B. It is our hope that these tests on ISS will help mitigate the risk of an inadequate food supply for long-duration missions by adding fresh vegetables to the crew diet. This research was co-funded by the Human Research Program and Space Biology (MTL#1075) in the ILSRA 2015 NRA call
    corecore