3,656 research outputs found

    Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley

    Get PDF
    Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry

    Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers

    Get PDF
    Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging

    Binary evolution with LOFT

    Full text link
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of very faint X-ray binaries, orbital period distribution of black hole X-ray binaries and neutron star spin up. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing. (v2 few typos corrected

    Mapping of sea ice and measurement of its drift using aircraft synthetic aperture radar images

    Get PDF
    Side-looking radar images of Arctic sea ice were obtained as part of the Arctic Ice Dynamics Joint Experiment. Repetitive coverages of a test site in the Arctic were used to measure sea ice drift, employing single images and blocks of overlapping radar image strips; the images were used in conjunction with data from the aircraft inertial navigation and altimeter. Also, independently measured, accurate positions of a number of ground control points were available. Initial tests of the method were carried out with repeated coverages of a land area on the Alaska coast (Prudhoe). Absolute accuracies achieved were essentially limited by the accuracy of the inertial navigation data. Errors of drift measurements were found to be about ±2.5 km. Relative accuracy is higher; its limits are set by the radar image geometry and the definition of identical features in sequential images. The drift of adjacent ice features with respect to one another could be determined with errors of less than ±0.2 km

    Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    Full text link
    The properties of the population of merging binary black holes encode some of the uncertain physics of the evolution of massive stars in binaries. The binary black hole merger rate and chirp mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common envelope efficiency, kick velocity dispersion, and mass loss rates during the luminous blue variable and Wolf--Rayet stellar evolutionary phases. We find that 1000 observations would constrain these model parameters to a fractional accuracy of a few percent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years.Comment: 12 pages, 9 figures; version accepted by Monthly Notices of the Royal Astronomical Societ

    Highly multimode memory in a crystal

    Full text link
    We experimentally demonstrate the storage of 1060 temporal modes onto a thulium-doped crystal using an atomic frequency comb (AFC). The comb covers 0.93 GHz defining the storage bandwidth. As compared to previous AFC preparation methods (pulse sequences i.e. amplitude modulation), we only use frequency modulation to produce the desired optical pumping spectrum. To ensure an accurate spectrally selective optical pumping, the frequency modulated laser is self-locked on the atomic comb. Our approach is general and should be applicable to a wide range of rare-earth doped material in the context of multimode quantum memory

    Modeling the Redshift Evolution of the Normal Galaxy X-ray Luminosity Function

    Get PDF
    Emission from X-ray binaries (XRBs) is a major component of the total X-ray luminosity of normal galaxies, so X-ray studies of high redshift galaxies allow us to probe the formation and evolution of X-ray binaries on very long timescales. In this paper, we present results from large-scale population synthesis models of binary populations in galaxies from z = 0 to 20. We use as input into our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. (2011) to self-consistently account for the star formation history (SFH) and metallicity evolution of each galaxy. We run a grid of 192 models, varying all the parameters known from previous studies to affect the evolution of XRBs. We use our models and observationally derived prescriptions for hot gas emission to create theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins. Models with low CE efficiencies, a 50% twins mass ratio distribution, a steeper IMF exponent, and high stellar wind mass loss rates best match observational results from Tzanavaris & Georgantopoulos (2008), though they significantly underproduce bright early-type and very bright (Lx > 10d41) late-type galaxies. These discrepancies are likely caused by uncertainties in hot gas emission and SFHs, AGN contamination, and a lack of dynamically formed Low-mass XRBs. In our highest likelihood models, we find that hot gas emission dominates the emission for most bright galaxies. We also find that the evolution of the normal galaxy X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies with X-ray luminosities between 10d40 and 10d41 erg/s.Comment: Accepted into ApJ, 17 pages, 3 tables, 7 figures. Text updated to address referee's comment
    corecore