1,734 research outputs found

    Spectral evidence for carbonates on Mars: Hydrous carbonates

    Get PDF
    Although many of the spectral features of the Martian samples studied are not unique mineralogical indicators, much of the current spectral data is consistent with (possibly abundant) hydrous carbonates on the surface of Mars. The absorption features in the measured samples were quite weak compared with those of anhydrous carbonates. The weak features imply that significantly more hydrous carbonates can be incorporated onto the surface before becoming spectrally evident; however, exact limits have yet to be determined. The stability of these materials in the Martian environment is not known, but their formation and occurrence in low temperature terrestrial environments makes them appealing candidates for weathering products on Mars

    A diffuse radar scattering model from Martian surface rocks

    Get PDF
    Remote sensing of Mars has been done with a variety of instrumentation at various wavelengths. Many of these data sets can be reconciled with a surface model of bonded fines (or duricrust) which varies widely across the surface and a surface rock distribution which varies less so. A surface rock distribution map from -60 to +60 deg latitude has been generated by Christensen. Our objective is to model the diffuse component of radar reflection based on this surface distribution of rocks. The diffuse, rather than specular, scattering is modeled because the diffuse component arises due to scattering from rocks with sizes on the order of the wavelength of the radar beam. Scattering for radio waves of 12.5 cm is then indicative of the meter scale and smaller structure of the surface. The specular term is indicative of large scale surface undulations and should not be causally related to other surface physical properties. A simplified model of diffuse scattering is described along with two rock distribution models. The results of applying the models to a planet of uniform fractional rock coverage with values ranging from 5 to 20% are discussed

    New spectral observations of Callisto and leading/trailing hemisphere distinctions

    Get PDF
    In December 1989 and January 1990, new observations of the leading and trailing edges of Callisto were made from the NASA Infrared Telescope Facility on Mauna Kea in Hawaii. Using the Cool Grating Array Spectrometer, spectral coverage was obtained from 1.89 to 2.46 microns and from 2.8 to 4.2 microns for both the leading and trailing hemispheres. In addition, spectral coverage of the leading hemisphere was obtained from 1.30 to 2.55 microns and from 4.2 to 4.8 microns. Interpretations of the data are given

    Bootstrapped Block Lanczos for large-dimension eigenvalue problems

    Full text link
    The Lanczos algorithm has proven itself to be a valuable matrix eigensolver for problems with large dimensions, up to hundreds of millions or even tens of billions. The computational cost of using any Lanczos algorithm is dominated by the number of sparse matrix-vector multiplications until suitable convergence is reached. Block Lanczos replaces sparse matrix-vector multiplication with sparse matrix-matrix multiplication, which is more efficient, but for a randomly chosen starting block (or pivot), more multiplications are required to reach convergence. We find that a bootstrapped pivot block, that is, an initial block constructed from approximate eigenvectors computed in a truncated space, leads to a dramatically reduced number of multiplications, significantly outperforming both standard vector Lanczos and block Lanczos with a random pivot. A key condition for speed-up is that the pivot block have a non-trivial overlap with the final converged vectors. We implement this approach in a configuration-interaction code for nuclear structure, and find a reduction in time-to-solution by a factor of two or more, up to a factor of ten.Comment: 14 pages, 5 figures, 2 table

    Behavior of shell-model configuration moments

    Full text link
    An important input into reaction theory is the density of states or the level density. Spectral distribution theory (also known as nuclear statistical spectroscopy) characterizes the secular behavior of the density of states through moments of the Hamiltonian. One particular approach is to partition the model space into subspaces and find the moments in those subspaces; a convenient choice of subspaces are spherical shell-model configurations. We revisit these configuration moments and find, for complete 0ω0\hbar\omega many-body spaces, the following behaviors: (a) the configuration width is nearly constant for all configurations; (b) the configuration asymmetry or third moment is strongly correlated with the configuration centroid; (c) the configuration fourth moment, or excess is linearly related to the square to the configuration asymmetry. Such universal behavior may allow for more efficient modeling of the density of states in a shell-model framework.Comment: 12 pages, 8 figure

    Evidence for ammonium-bearing minerals in Ceres

    Get PDF
    Evidence for ammonium-bearing minerals was found on the surface of the largest asteroid Ceres. The presence of ammonium-bearing clays suggests that Ceres has experienced a period of alteration by substantial amounts of an ammonium-bearing fluid. The presence of the ammonium-bearing clays does not preclude Ceres maintaining a volatile inventory in the core or in a volatile-rich zone at some distance below the surface. Telescopic observations of Ceres, using the 3.0 meter NASA Infrared telescope facility prompted this reevaluation of its surface mineralogy

    Seasonal, Taxonomic, and Local Habitat Components of Bird-window Collisions on an Urban University Campus in Cleveland, OH

    Get PDF
    Author Institution: Department of Biological, Geological & Environmental Sciences, Cleveland State UniversityAuthor Institution: Department of Ornithology, Cleveland Museum of Natural HistoryMigrating birds congregate near the shores of Lake Erie during migration and may be funneled through small green spaces within the urban matrix of Great Lake coastal cities, where they are at risk of higher mortality from manmade structures. Bird deaths due to window collisions were assessed amongst a complex of low-rise buildings (<30 m) on a university campus in Cleveland, OH. A 1.8 km route was surveyed three times per week during a 12-month period. Deaths were tested against null hypotheses that season, taxonomy, and building attributes had no significant relationship with avian mortality. We recovered 271 dead birds of 50 species, all of which were consistent with regional bird lists and Neotropical-Nearctic and North American migrants through Ohio. Deaths occurred non-randomly by week, month, and migratory status with 90 percent of deaths occurring during spring and fall migrations. Consequently, migrants (warblers: 34 percent of species richness, 30 percent of deaths; sparrows: 14 percent of richness, 35 percent of deaths) were observed nine times more frequently than residents. Neotropical-Nearctic migrant species outnumbered North American migrant species. Although there was no statistical difference between the compass direction of a building facade and the number of deaths, deaths were not randomly distributed among campus buildings. Rather, significantly more deaths occurred at facades with higher percentages of glass. The presence of trees within 5 m of a window and the reflection of trees in windows were also associated with a greater risk of fatality. A better understanding of the factors associated with bird-window collisions is a pressing issue in the conservation of migratory birds
    corecore