40 research outputs found

    A practical indicator for surface ocean heat and freshwater buoyancy fluxes and its application to the NCEP reanalysis data

    Get PDF
    The buoyancy flux at the air/sea interface plays a key role in water mass transformation and mixing as it modifies surface water density and in turn drives overturning and enhances stratification. It is the interplay of these two independent heat and freshwater buoyancy flux components that is of central importance when analysing mechanisms of the ocean/atmosphere interaction. Here, a diagnostic quantity (ΘB) is presented that allows to capture the relative contribution of both components on the buoyancy flux in one single quantity. Using NCEP reanalysis of heat and freshwater fluxes (1948–2009) demonstrates that ΘB is a convenient tool to analyse both the temporal and spatial variability of their corresponding buoyancy fluxes. For the global ocean the areal extent of buoyancy gain and loss regions changed by 10%, with the largest extent of buoyancy gain during the 1970–1990 period. In the subpolar North Atlantic, and likewise in the South Pacific, decadal variability in freshwater flux is pronounced and, for the latter region, takes control over the total buoyancy flux since the 1980s. Some of the areal extent time series show a significant correlation with large-scale climate indices

    Regional Patterns of Sea Level Change Related to Interannual Variability and Multidecadal Trends in the Atlantic Meridional Overturning Circulation

    Get PDF
    Some studies of ocean climate model experiments suggest that regional changes in dynamic sea level could provide a valuable indicator of trends in the strength of the Atlantic meridional overturning circulation (MOC). This paper describes the use of a sequence of global ocean–ice model experiments to show that the diagnosed patterns of sea surface height (SSH) anomalies associated with changes in the MOC in the North Atlantic (NA) depend critically on the time scales of interest. Model hindcast simulations for 1958–2004 reproduce the observed pattern of SSH variability with extrema occurring along the Gulf Stream (GS) and in the subpolar gyre (SPG), but they also show that the pattern is primarily related to the wind-driven variability of MOC and gyre circulation on interannual time scales; it is reflected also in the leading EOF of SSH variability over the NA Ocean, as described in previous studies. The pattern, however, is not useful as a “fingerprint” of longer-term changes in the MOC: as shown with a companion experiment, a multidecadal, gradual decline in the MOC [of 5 Sv (1 Sv ≡ 106 m3 s−1) over 5 decades] induces a much broader, basin-scale SSH rise over the mid-to-high-latitude NA, with amplitudes of 20 cm. The detectability of such a trend is low along the GS since low-frequency SSH changes are effectively masked here by strong variability on shorter time scales. More favorable signal-to-noise ratios are found in the SPG and the eastern NA, where a MOC trend of 0.1 Sv yr−1 would leave a significant imprint in SSH already after about 20 years

    Winter mixed layer development in the central Irminger Sea : the effect of strong, intermittent wind events

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 541-565, doi:10.1175/2007JPO3678.1.The impact of the Greenland tip jet on the wintertime mixed layer of the southwest Irminger Sea is investigated using in situ moored profiler data and a variety of atmospheric datasets. The mixed layer was observed to reach 400 m in the spring of 2003 and 300 m in the spring of 2004. Both of these winters were mild and characterized by a low North Atlantic Oscillation (NAO) index. A typical tip jet event is associated with a low pressure system that is advected by upper-level steering currents into the region east of Cape Farewell and interacts with the high topography of southern Greenland. Heat flux time series for the mooring site were constructed that include the enhancing influence of the tip jet events. This was used to force a one-dimensional mixed layer model, which was able to reproduce the observed envelope of mixed layer deepening in both winters. The deeper mixed layer of the first winter was largely due to a higher number of robust tip jet events, which in turn was caused by the steering currents focusing more storms adjacent to southern Greenland. Application of the mixed layer model to the winter of 1994–95, a period characterized by a high-NAO index, resulted in convection exceeding 1700 m. This prediction is consistent with hydrographic data collected in summer 1995, supporting the notion that deep convection can occur in the Irminger Sea during strong winters.KV and RP were supported by National Science Foundation Grant OCE-0450658. GWKM was supported by the Canadian Foundation for Climate and Atmospheric Sciences. MHR was supported by the Nordic Council of Ministers (West-Nordic Ocean Climate)
    corecore